Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Transport Mechanisms Gain Access To Brain

19.02.2016

Three-year key project receives 560,000 euros in funding

Researchers at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University are exploring new approaches to the treatment of diseases of the central nervous system such as Alzheimer's and brain tumours. In collaboration with a research team from the USA, Prof. Dr. Gert Fricker in the field of pharmaceutical technology and neurobiologist Prof. Dr. Ulrike Müller are developing transport systems that can penetrate the blood-brain barrier to "ferry" certain agents into the brain. The Else Kröner-Fresenius Foundation is funding the three-year key project with approximately 560,000 euros. Research work is scheduled to begin in April 2016.


The blood-brain barrier, which separates the central nervous system from circulating blood, is formed by the vascular walls of the cerebral capillaries and allows the free passage of only a few nutrients. The barrier is virtually impermeable especially to macromolecules like proteins, DNA and RNA. Yet it is precisely these molecules, known as biologicals, that Prof. Fricker indicates are highly interesting for treating Alzheimer's and aggressive brain tumours, the glioblastomas.

His working group has now developed special polymer nanoparticles with a modified surface that enables them to specifically dock onto and permeate the blood-brain barrier, after which they dissolve in the brain. Prof. Fricker explains that these particles can be loaded with low molecular agents, i.e., substances of low molecular weight. The particles then transport the otherwise disallowed substances into the central nervous system, where they reach the therapeutically necessary concentrations.

The underlying concept is now being applied to biologicals provided by Prof. Müller and her colleague Prof. Dr. Olivia Merkel of Wayne State University Detroit (USA). Ulrike Müller specialises in Alzheimer’s research. The Heidelberg neurobiologists and her working group supply the peptide APPsα, which protects the nerve cells and acts as an antagonist to the toxic ß amyloid. The ß amyloid deposits are thought to be one of the main causes of Alzheimer’s disease. Olivia Merkel and her research team are supplying the so-called small interfering RNA molecules. These short molecules of ribonucleic acid help turn off the expression of certain genes in brain tumours.

The charitable Else Kröner-Fresenius Foundation promotes the advancement of medical research. The foundation supports key projects with the potential to make fundamental and groundbreaking discoveries that could impact an entire field of research.

Contact:
Prof. Dr. Gert Fricker and Prof. Dr. Ulrike Müller
Institute of Pharmacy and Molecular Biotechnology
Phone: +49 6221 54-8336 (Fricker) and -6717 (Müller)
gert.fricker@uni-hd.de, u.mueller@urz.uni-hd.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.ipmb.uni-heidelberg.de/phazt/abteilung
http://www.ipmb.uni-heidelberg.de/bioinfo-fkt_gen/mueller

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>