Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool to unlock genetics of grape-growing

28.02.2014

University of Adelaide researchers have developed a new web-based tool to help unlock the complex genetics and biological processes behind grapevine development.

Published in the journal BMC Genomics, the researchers describe their online database that can be used to examine how almost 30,000 genes work together in groups and networks to produce the vine and its grapes.

"The complexity of plants is easily overlooked when we're enjoying a glass of wine," says project leader Associate Professor Christopher Ford at the University's School of Agriculture, Food and Wine. "But every part of the vine and the grape, each final attribute of flavour, colour and aroma, their ability to resist pests and adapt to salinity, all of these represent the outcomes of the coordinated expression - switching on or off - of sometimes thousands of individual genes, each encoding some small component of the final product.

"If we know the identity of these genes, and the patterns in which they are turned on and off, we will be better able to understand how their expression leads to these complex outcomes."

The work, conducted by PhD student Darren Wong and post-doctoral researchers Crystal Sweetman and Damian Drew, outlines a 'guilt by association' principle where genes turned on at the same time and in the same tissues are likely to be working together.

"For example, if we know there is a gene that is responsible for making an enzyme which is critical at a particular stage of grape production, then this tool will enable us to see which other genes are switched on in the grape at the same time," says Associate Professor Ford.

"By clustering genes based on patterns of this 'co-expression' it's possible to identify not just the genes we expected to be involved but others whose roles in a particular function we didn't suspect.

"In this way we can build up networks of identified genes that we can say are working together under certain conditions, and see which ones may be important, for instance, in helping the plant cope with drought or salinity."

The database (called VTCdb), is freely available as a resource for researchers and grapevine breeders.

"It will provide researchers and breeders with a comprehensive tool to help them make important decisions in their prioritisation of gene candidates for ongoing study of the biological processes related to all aspects of vine and grape development, metabolism and stress responses," says Associate Professor Ford.

"Ultimately, it will benefit the industry by helping produce new traits in grapevines for improved flavour and quality and climate and environmental adaptation."

Media Contact:

Associate Professor Chris Ford
Deputy Head
School of Agriculture, Food and Wine
The University of Adelaide
Phone: +61 8 8313 7386
Mobile: +61 413 880 685
christopher.ford@adelaide.edu.au

Darren Wong
PhD candidate
School of Agriculture, Food and Wine
Phone: +61 8313 0585
Mobile: +61 401 340 784
darren.wong@adelaide.edu.au

Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Chris Ford | EurekAlert!
Further information:
http://www.adelaide.edu.au

Further reports about: BMC Deputy Phone biological processes conditions genes grape-growing networks salinity

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>