Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool to unlock genetics of grape-growing

28.02.2014

University of Adelaide researchers have developed a new web-based tool to help unlock the complex genetics and biological processes behind grapevine development.

Published in the journal BMC Genomics, the researchers describe their online database that can be used to examine how almost 30,000 genes work together in groups and networks to produce the vine and its grapes.

"The complexity of plants is easily overlooked when we're enjoying a glass of wine," says project leader Associate Professor Christopher Ford at the University's School of Agriculture, Food and Wine. "But every part of the vine and the grape, each final attribute of flavour, colour and aroma, their ability to resist pests and adapt to salinity, all of these represent the outcomes of the coordinated expression - switching on or off - of sometimes thousands of individual genes, each encoding some small component of the final product.

"If we know the identity of these genes, and the patterns in which they are turned on and off, we will be better able to understand how their expression leads to these complex outcomes."

The work, conducted by PhD student Darren Wong and post-doctoral researchers Crystal Sweetman and Damian Drew, outlines a 'guilt by association' principle where genes turned on at the same time and in the same tissues are likely to be working together.

"For example, if we know there is a gene that is responsible for making an enzyme which is critical at a particular stage of grape production, then this tool will enable us to see which other genes are switched on in the grape at the same time," says Associate Professor Ford.

"By clustering genes based on patterns of this 'co-expression' it's possible to identify not just the genes we expected to be involved but others whose roles in a particular function we didn't suspect.

"In this way we can build up networks of identified genes that we can say are working together under certain conditions, and see which ones may be important, for instance, in helping the plant cope with drought or salinity."

The database (called VTCdb), is freely available as a resource for researchers and grapevine breeders.

"It will provide researchers and breeders with a comprehensive tool to help them make important decisions in their prioritisation of gene candidates for ongoing study of the biological processes related to all aspects of vine and grape development, metabolism and stress responses," says Associate Professor Ford.

"Ultimately, it will benefit the industry by helping produce new traits in grapevines for improved flavour and quality and climate and environmental adaptation."

Media Contact:

Associate Professor Chris Ford
Deputy Head
School of Agriculture, Food and Wine
The University of Adelaide
Phone: +61 8 8313 7386
Mobile: +61 413 880 685
christopher.ford@adelaide.edu.au

Darren Wong
PhD candidate
School of Agriculture, Food and Wine
Phone: +61 8313 0585
Mobile: +61 401 340 784
darren.wong@adelaide.edu.au

Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Chris Ford | EurekAlert!
Further information:
http://www.adelaide.edu.au

Further reports about: BMC Deputy Phone biological processes conditions genes grape-growing networks salinity

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>