Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique maps life's effects on our DNA

21.07.2014

Researchers develop new, powerful single-cell technique to study environmental effects on DNA

Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment affects our development and the traits we inherit from our parents.

The technique can be used to map all of the 'epigenetic marks' on the DNA within a single cell. This single-cell approach will boost understanding of embryonic development, could enhance clinical applications like cancer therapy and fertility treatments, and has the potential to reduce the number of mice currently needed for this research.

'Epigenetic marks' are chemical tags or proteins that mark DNA and act as a kind of cellular memory. They do not change the DNA sequence but record a cell's experiences onto the DNA, which allows cells to remember an experience long after it has faded. Placing these tags is part of normal development; they tell genes whether to be switched on or off and so can determine how the cell develops.

Different sets of active genes make a skin cell different from a brain cell, for example. However, environmental cues such as diet can also alter where epigenetic tags are laid down on DNA and influence an organism's long-term health.

Dr Gavin Kelsey, from the Babraham Institute, said: "The ability to capture the full map of these epigenetic marks from individual cells will be critical for a full understanding of early embryonic development, cancer progression and aid the development of stem cell therapies.

"Epigenetics research has mostly been reliant on using the mouse as a model organism to study early development. Our new single-cell method gives us an unprecedented ability to study epigenetic processes in human early embryonic development, which has been restricted by the very limited amount of tissue available for analysis."

The research, published in Nature Methods, offers a new single-cell technique capable of analysing DNA methylation – one of the key epigenetic marks – across the whole genome. The method treats the cellular DNA with a chemical called bisulphite. Treated DNA is then amplified and read on high-throughput sequencing machines to show up the location of methylation marks and the genes being affected.

These analyses will help to define how epigenetic changes in individual cells during early development drive cell fate. Current methods observe epigenetic marks in multiple, pooled cells. This can obscure modifications taking place in individual cells at a time in development when each cell has the potential to form in a unique way. The new method has already revealed that many of the methylation marks that differ between individual cells are precisely located in sites that control gene activity.

Dr Gavin Kelsey, said: "Our work provides a proof-of-principle that large-scale, single-cell epigenetic analysis is achievable to help us understand how epigenetic changes control embryonic development. The application of single-cell approaches to epigenetic understanding goes far beyond basic biological research. Future clinical applications could include the analysis of individual cancer cells to provide clinicians with the information to tailor treatments, and improvements in fertility treatment by understanding the potential for epigenetic errors in assisted reproduction technologies."

###

Prof Wolf Reik, a founder of the Wellcome Trust Sanger Institute Single Cell Genomics Centre, added: "This exciting new method has already given some remarkable insights into how much variation there is in the epigenetic information in embryonic stem cells. This may underlie the enormous plasticity these cells have to develop into many different cell types in the body".

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Medical Research Council (MRC), the Wellcome Trust, EU Blueprint and EU EpiGeneSys.

Rob Dawson | Eurek Alert!

Further reports about: Biotechnology Cell DNA Genomics Trust Wellcome effects epigenetic fertility genes methylation technique

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>