Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New TAU Research Links Alzheimer's Disease to Brain Hyperactivity

01.07.2014

Study identifies molecular mechanism that triggers hyperactivity of brain circuits in early stages of the disease

Patients with Alzheimer's disease run a high risk of seizures. While the amyloid-beta protein involved in the development and progression of Alzheimer's seems the most likely cause for this neuronal hyperactivity, how and why this elevated activity takes place hasn't yet been explained — until now.

A new study by Tel Aviv University researchers, published in Cell Reports, pinpoints the precise molecular mechanism that may trigger an enhancement of neuronal activity in Alzheimer's patients, which subsequently damages memory and learning functions.

The research team, led by Dr. Inna Slutsky of TAU's Sackler Faculty of Medicine and Sagol School of Neuroscience, discovered that the amyloid precursor protein (APP), in addition to its well-known role in producing amyloid-beta, also constitutes the receptor for amyloid-beta. According to the study, the binding of amyloid-beta to pairs of APP molecules triggers a signalling cascade, which causes elevated neuronal activity.

Elevated activity in the hippocampus — the area of the brain that controls learning and memory — has been observed in patients with mild cognitive impairment and early stages of Alzheimer's disease. Hyperactive hippocampal neurons, which precede amyloid plaque formation, have also been observed in mouse models with early onset Alzheimer's disease. "These are truly exciting results," said Dr. Slutsky. "Our work suggests that APP molecules, like many other known cell surface receptors, may modulate the transfer of information between neurons."

With the understanding of this mechanism, the potential for restoring memory and protecting the brain is greatly increased.

Building on earlier research

The research project was launched five years ago, following the researchers' discovery of the physiological role played by amyloid-beta, previously known as an exclusively toxic molecule. The team found that amyloid-beta is essential for the normal day-to-day transfer of information through the nerve cell networks. If the level of amyloid-beta is even slightly increased, it causes neuronal hyperactivity and greatly impairs the effective transfer of information between neurons.

In the search for the underlying cause of neuronal hyperactivity, TAU doctoral student Hilla Fogel and postdoctoral fellow Samuel Frere found that while unaffected "normal" neurons became hyperactive following a rise in amyloid-beta concentration, neurons lacking APP did not respond to amyloid-beta. "This finding was the starting point of a long journey toward decoding the mechanism of APP-mediated hyperactivity," said Dr. Slutsky.

The researchers, collaborating with Prof. Joel Hirsch of TAU's Faculty of Life Sciences, Prof. Dominic Walsh of Harvard University, and Prof. Ehud Isacoff of University of California Berkeley, harnessed a combination of cutting-edge high-resolution optical imaging, biophysical methods and molecular biology to examine APP-dependent signalling in neural cultures, brain slices, and mouse models. Using highly sensitive biophysical techniques based on fluorescence resonance energy transfer (FRET) between fluorescent proteins in close proximity, they discovered that APP exists as a dimer at presynaptic contacts, and that the binding of amyloid-beta triggers a change in the APP-APP interactions, leading to an increase in calcium flux and higher glutamate release — in other words, brain hyperactivity.

A new approach to protecting the brain

"We have now identified the molecular players in hyperactivity," said Dr. Slutsky. "TAU postdoctoral fellow Oshik Segev is now working to identify the exact spot where the amyloid-beta binds to APP and how it modifies the structure of the APP molecule. If we can change the APP structure and engineer molecules that interfere with the binding of amyloid-beta to APP, then we can break up the process leading to hippocampal hyperactivity. This may help to restore memory and protect the brain."

Previous studies by Prof. Lennart Mucke's laboratory strongly suggest that a reduction in the expression level of "tau" (microtubule-associated protein), another key player in Alzheimer's pathogenesis, rescues synaptic deficits and decreases abnormal brain activity in animal models. "It will be crucial to understand the missing link between APP and 'tau'-mediated signalling pathways leading to hyperactivity of hippocampal circuits. If we can find a way to disrupt the positive signalling loop between amyloid-beta and neuronal activity, it may rescue cognitive decline and the conversion to Alzheimer's disease," said Dr. Slutsky.

The study was supported by European Research Council, Israel Science Foundation, and Alzheimer's Association grants.

George Hunka | Eurek Alert!
Further information:
http://www.aftau.org/newsroom?5f7e87de-afbe-463c-9aa4-ac1596360ac1

Further reports about: APP Brain Building Disease Faculty Medicine activity cognitive engineer protein signalling

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>