Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study involving CU-Boulder tells the tale of a kangaroo's tail

02.07.2014

Researchers find when a kangaroo is walking, it uses its tail just like a leg

Kangaroos may be nature's best hoppers. But when they are grazing on all fours, which is most of the time, their tail becomes a powerful fifth leg, says a new study.


This video is an analysis of video of kangaroos walking has helped scientists discover how important their tails are during locomotion.

Credit: Maxwell Donelan, Simon Fraser University

Involving researchers at the University of Colorado Boulder, Simon Fraser University in Burnaby, Canada, and the University of New South Wales in Sydney, Australia, the study illuminates the seemingly mundane task of foraging by red kangaroos. While such activity appears awkward, it turns out their tails provide as much propulsive force as their front and hind legs combined as they eat their way across the landscape.

"We found that when a kangaroo is walking, it uses its tail just like a leg," said Associate Professor Maxwell Donelan of Simon Fraser University, corresponding author for the study. "They use it to support, propel and power their motion. In fact, they perform as much mechanical work with their tails as we do with one of our legs."

... more about:
»Australia »Biology »kangaroos »study

"We went into this thinking the tail was primarily used like a strut, a balancing pole, or a one-legged milking stool," said Associate Professor Rodger Kram of CU-Boulder's Department of Integrative Physiology, a study co-author. "What we didn't expect to find was how much power the tails of the kangaroos were producing. It was pretty darn surprising."

Red kangaroos are the largest of the kangaroo species in Australia. When grazing on grasses, they move both hind feet forward "paired limb" style while using their tails and front limbs together to support their bodies. "They appear to be awkward and ungainly walkers when one watches them moseying around in their mobs looking for something to eat," said Kram. "But it turns out it is not really that awkward, just weird."

In human locomotion, the back foot acts as the gas pedal and the front foot acts as a brake, which is not especially efficient, said Kram. But he likens a walking kangaroo to a skateboarder who has one foot on the board and uses the other foot -- in this case a tail -- to push backward off the pavement, increasing the forward motion.

A paper on the subject was published online today in Biology Letters. In addition to Kram and Donelan, the paper was co-authored by Postdoctoral Fellow Shawn O'Connor of Simon Fraser and Emeritus Professor Terence Dawson of the University of New South Wales. The study was funded by the Natural Sciences and Engineering Research Council of Canada, the Australian Research Council, and traveling fellowships from the International Society for Biomechanics and the Journal of Experimental Biology.

Donelan, a former graduate student under Kram, said no animal other than the kangaroo uses its tail like a leg. "Their tails have more than 20 vertebrae, taking on the role of our foot, calf, and thigh bones."

The research project had its beginnings in 1973, when Dawson, a visiting professor at Harvard University, was working with Harvard Professor Richard Taylor, who later became Kram's advisor. Dawson coaxed a small group of kangaroos to hop and walk on a large motorized treadmill, with a goal of measuring the energy costs of locomotion at varying speeds. Dawson and Kram eventually showed that a kangaroo can increase its metabolism by 50 times during exercise.

"Kangaroos are really special mammals," said Dawson. "Work over the past half century has turned the notion that they belong to an inefficient, primitive group of mammals totally on its head."

The kangaroo tail also acts as a dynamic, springy counterbalance during hopping and boosts balance when male kangaroos grab each other by the chests or shoulders, then rear back and kick each other in the stomach in an attempt to assert dominance for the purpose of reproduction.

For the study the team videotaped five red kangaroos in Dawson's Sydney lab that had been trained to walk forward on a force-measuring platform with Plexiglas sides. The platform's sensors measured vertical, backward and forward forces from the legs and tails of the animals. The kangaroos had been taught that walking forward on the platform resulted in being rewarded with sweet treats, said Kram.

Over his career Kram and his students have studied the locomotion of a number of creatures, from elephants, tortoises and llamas to ostriches and beetles.

Although much of the data for the new study was collected years ago, other research efforts by the team members slowly pushed some of the key kangaroo locomotion data to the back burner. "But this was a study we just could not let go of," said Kram. "It was just too much fun. It's a real wonder of nature, how these kangaroos move about and what they are able to do."

Kram calls the evolution of the kangaroo tail, which is thought to have been prehensile when opossum-like kangaroo ancestors were living in trees, an "exaptation" -- a shift in the function of a biological trait over time. He likened it to a roll of duct tape in the back of a truck. "You know you are going to use it, you just don't know when," he said.

"I'm envious of kangaroos," said Kram, a competitive master runner in the mile and 1,500 meters. "When they hop faster, they don't use energy at a faster rate. The have the ability to move faster and not get tired, the ultimate goal of a runner."

Rodger Kram | Eurek Alert!
Further information:
http://www.colorado.edu

Further reports about: Australia Biology kangaroos study

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Time travel into the past of marginal seas: IOW expedition explores Canadian coastal waters

31.08.2015 | Earth Sciences

Using DNA origami to build nanodevices of the future

31.08.2015 | Health and Medicine

10. Workshop Magnetlagertechnik Zittau-Chemnitz

31.08.2015 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>