Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study involving CU-Boulder tells the tale of a kangaroo's tail

02.07.2014

Researchers find when a kangaroo is walking, it uses its tail just like a leg

Kangaroos may be nature's best hoppers. But when they are grazing on all fours, which is most of the time, their tail becomes a powerful fifth leg, says a new study.


This video is an analysis of video of kangaroos walking has helped scientists discover how important their tails are during locomotion.

Credit: Maxwell Donelan, Simon Fraser University

Involving researchers at the University of Colorado Boulder, Simon Fraser University in Burnaby, Canada, and the University of New South Wales in Sydney, Australia, the study illuminates the seemingly mundane task of foraging by red kangaroos. While such activity appears awkward, it turns out their tails provide as much propulsive force as their front and hind legs combined as they eat their way across the landscape.

"We found that when a kangaroo is walking, it uses its tail just like a leg," said Associate Professor Maxwell Donelan of Simon Fraser University, corresponding author for the study. "They use it to support, propel and power their motion. In fact, they perform as much mechanical work with their tails as we do with one of our legs."

... more about:
»Australia »Biology »kangaroos »study

"We went into this thinking the tail was primarily used like a strut, a balancing pole, or a one-legged milking stool," said Associate Professor Rodger Kram of CU-Boulder's Department of Integrative Physiology, a study co-author. "What we didn't expect to find was how much power the tails of the kangaroos were producing. It was pretty darn surprising."

Red kangaroos are the largest of the kangaroo species in Australia. When grazing on grasses, they move both hind feet forward "paired limb" style while using their tails and front limbs together to support their bodies. "They appear to be awkward and ungainly walkers when one watches them moseying around in their mobs looking for something to eat," said Kram. "But it turns out it is not really that awkward, just weird."

In human locomotion, the back foot acts as the gas pedal and the front foot acts as a brake, which is not especially efficient, said Kram. But he likens a walking kangaroo to a skateboarder who has one foot on the board and uses the other foot -- in this case a tail -- to push backward off the pavement, increasing the forward motion.

A paper on the subject was published online today in Biology Letters. In addition to Kram and Donelan, the paper was co-authored by Postdoctoral Fellow Shawn O'Connor of Simon Fraser and Emeritus Professor Terence Dawson of the University of New South Wales. The study was funded by the Natural Sciences and Engineering Research Council of Canada, the Australian Research Council, and traveling fellowships from the International Society for Biomechanics and the Journal of Experimental Biology.

Donelan, a former graduate student under Kram, said no animal other than the kangaroo uses its tail like a leg. "Their tails have more than 20 vertebrae, taking on the role of our foot, calf, and thigh bones."

The research project had its beginnings in 1973, when Dawson, a visiting professor at Harvard University, was working with Harvard Professor Richard Taylor, who later became Kram's advisor. Dawson coaxed a small group of kangaroos to hop and walk on a large motorized treadmill, with a goal of measuring the energy costs of locomotion at varying speeds. Dawson and Kram eventually showed that a kangaroo can increase its metabolism by 50 times during exercise.

"Kangaroos are really special mammals," said Dawson. "Work over the past half century has turned the notion that they belong to an inefficient, primitive group of mammals totally on its head."

The kangaroo tail also acts as a dynamic, springy counterbalance during hopping and boosts balance when male kangaroos grab each other by the chests or shoulders, then rear back and kick each other in the stomach in an attempt to assert dominance for the purpose of reproduction.

For the study the team videotaped five red kangaroos in Dawson's Sydney lab that had been trained to walk forward on a force-measuring platform with Plexiglas sides. The platform's sensors measured vertical, backward and forward forces from the legs and tails of the animals. The kangaroos had been taught that walking forward on the platform resulted in being rewarded with sweet treats, said Kram.

Over his career Kram and his students have studied the locomotion of a number of creatures, from elephants, tortoises and llamas to ostriches and beetles.

Although much of the data for the new study was collected years ago, other research efforts by the team members slowly pushed some of the key kangaroo locomotion data to the back burner. "But this was a study we just could not let go of," said Kram. "It was just too much fun. It's a real wonder of nature, how these kangaroos move about and what they are able to do."

Kram calls the evolution of the kangaroo tail, which is thought to have been prehensile when opossum-like kangaroo ancestors were living in trees, an "exaptation" -- a shift in the function of a biological trait over time. He likened it to a roll of duct tape in the back of a truck. "You know you are going to use it, you just don't know when," he said.

"I'm envious of kangaroos," said Kram, a competitive master runner in the mile and 1,500 meters. "When they hop faster, they don't use energy at a faster rate. The have the ability to move faster and not get tired, the ultimate goal of a runner."

Rodger Kram | Eurek Alert!
Further information:
http://www.colorado.edu

Further reports about: Australia Biology kangaroos study

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>