Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy to avoid collateral damage in cancer

27.05.2014

Scientists at IMBA in Vienna have identified the final component that turns the RNA ligase into a fully viable enzyme in humans. That opens up perspectives for new treatment strategies for numerous types of breast cancer and leukemia.

Ligases are enzymes that aid the bonding of two molecules. For example, the RNA ligase ensures that copied parts of DNA are bonded into a viable tRNA, which in turn delivers the blueprint for producing proteins.

New starting point for cancer treatment

RNA ligases also have other functions that have not yet been researched in depth in humans because the composition of this important enzyme was not clear. “We already know from studies on yeasts that ligases are involved in defending cells from stress factors,” said Javier Martinez, a group leader at IMBA.

... more about:
»Biotechnologie »IMBA »RNA »avoid »damage »enzyme »ligase »ligases »proteins »tRNA

These functions are highly probable in mammal cells as well, and could be a new starting point for cancer therapies – especially for the treatment of various types of breast cancer and leukemia. Scientists already believe there is a close relationship between the function of the enzyme and the onset of these diseases.

“If we target and block one part of the ligase function, we will be able to approach cancer therapy in a much more specific manner than before. The impact of this enzyme is much farther down the cell’s signal transduction cascade than conventional medicinal targets,” said Martinez. This can be compared to a tree with one leaf affected by a disease. Of course it would be possible to cut off a thick limb to get rid of the diseased leaf. But it would be far less damaging to the tree to cut off just one thin branch.

This new approach is highly promising, and will certainly attract the interest of the pharmaceutical industry. But first Javier Martinez wants to test the function of ligases in mice.

Fundamental component of biology identified

This research into the function of ligases and their role in fighting cancer was made possible by the work of Martinez’ team, in which the entire composition of ligase was resolved piece by piece. The researchers’ initial success came in 2011, when they were first able to describe the most important basic components of the enzyme (Popow et al., Science 2011).

Now Johannes Popow, a young, gifted scientist, has achieved a breakthrough, which the renowned scientific journal Nature has published in its current issue. He discovered that an important protein called archease is bonded to the ligase. Without this protein, the enzyme can catalyze only one single bonding process. Archease is what makes it possible for the enzyme to regenerate so it is ready for the next catalyzation process.

Popow is very pleased “that we have identified this crucial component, and that by understanding the composition of ligase we will now be able to examine the function of this important enzyme more closely, and possibly apply the results for medical science.”

Publication
J. Popow, J. Jurkin, A. Schleiffer, J. Martinez. Analysis of orthologous groups reveals Archease and DDX1 as tRNA splicing factors. Nature, 2014. DOI 10.1038/nature13284.

Weitere Informationen:

http://www.imba.oeaw.ac.at

Evelyn Devuyst | idw - Informationsdienst Wissenschaft

Further reports about: Biotechnologie IMBA RNA avoid damage enzyme ligase ligases proteins tRNA

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>