Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy to avoid collateral damage in cancer

27.05.2014

Scientists at IMBA in Vienna have identified the final component that turns the RNA ligase into a fully viable enzyme in humans. That opens up perspectives for new treatment strategies for numerous types of breast cancer and leukemia.

Ligases are enzymes that aid the bonding of two molecules. For example, the RNA ligase ensures that copied parts of DNA are bonded into a viable tRNA, which in turn delivers the blueprint for producing proteins.

New starting point for cancer treatment

RNA ligases also have other functions that have not yet been researched in depth in humans because the composition of this important enzyme was not clear. “We already know from studies on yeasts that ligases are involved in defending cells from stress factors,” said Javier Martinez, a group leader at IMBA.

... more about:
»Biotechnologie »IMBA »RNA »avoid »damage »enzyme »ligase »ligases »proteins »tRNA

These functions are highly probable in mammal cells as well, and could be a new starting point for cancer therapies – especially for the treatment of various types of breast cancer and leukemia. Scientists already believe there is a close relationship between the function of the enzyme and the onset of these diseases.

“If we target and block one part of the ligase function, we will be able to approach cancer therapy in a much more specific manner than before. The impact of this enzyme is much farther down the cell’s signal transduction cascade than conventional medicinal targets,” said Martinez. This can be compared to a tree with one leaf affected by a disease. Of course it would be possible to cut off a thick limb to get rid of the diseased leaf. But it would be far less damaging to the tree to cut off just one thin branch.

This new approach is highly promising, and will certainly attract the interest of the pharmaceutical industry. But first Javier Martinez wants to test the function of ligases in mice.

Fundamental component of biology identified

This research into the function of ligases and their role in fighting cancer was made possible by the work of Martinez’ team, in which the entire composition of ligase was resolved piece by piece. The researchers’ initial success came in 2011, when they were first able to describe the most important basic components of the enzyme (Popow et al., Science 2011).

Now Johannes Popow, a young, gifted scientist, has achieved a breakthrough, which the renowned scientific journal Nature has published in its current issue. He discovered that an important protein called archease is bonded to the ligase. Without this protein, the enzyme can catalyze only one single bonding process. Archease is what makes it possible for the enzyme to regenerate so it is ready for the next catalyzation process.

Popow is very pleased “that we have identified this crucial component, and that by understanding the composition of ligase we will now be able to examine the function of this important enzyme more closely, and possibly apply the results for medical science.”

Publication
J. Popow, J. Jurkin, A. Schleiffer, J. Martinez. Analysis of orthologous groups reveals Archease and DDX1 as tRNA splicing factors. Nature, 2014. DOI 10.1038/nature13284.

Weitere Informationen:

http://www.imba.oeaw.ac.at

Evelyn Devuyst | idw - Informationsdienst Wissenschaft

Further reports about: Biotechnologie IMBA RNA avoid damage enzyme ligase ligases proteins tRNA

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>