Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software helps to find out why “jumping genes” are activated

16.09.2016

Jumping genes, so-called transposons, reproduce as parasites in the genome. This selfish behaviour can be an evolutionary advantage for the organism or harm it. There is still a debate about the factors controlling the activity of transposons. Comparisons between populations could shed an answer on this but have been biased due to technical problems. The software PoPoolationTE2 developed by the Institute of Population Genetics at Vetmeduni Vienna enables an unbiased analysis for the first time and determines the frequency of transposons. This might also be useful for cancer research and neurology. The software was presented in the renowned journals Molecular Biology and Evolution.

The genome is not a fixed code but flexible. It allows changes in the genes. Transposons, however, so-called jumping genes, interpret this flexibility in a much freer way than “normal” genes. They reproduce in the genome and chose their position themselves. Transposons can also jump into a gene and render it inoperative. Thus, they are an important distinguishing mark for the development of different organisms.


Using the new tool PoPoolationTE2 allows for calculating the frequency of transposable elements in Pool-Seq sequencing reactions. (Figure: Robert Kofler/Vetmeduni Vienna)

Unclear what triggers transposon activity

However, it is still unclear how jumping genes developed and what influences their activity. “In order to find out how, for instance, climate zones influence activity, we must be able to compare the frequency of transposons in different populations – in different groups of individuals,” explained bioinformatician Robert Kofler from the Institute of Population Genetics at the University of Veterinary Medicine, Vienna. But this frequency has not yet been determined precisely.

New software for a low-priced method

Transposons are detected by DNA sequencing. But this detection cannot be carried out for every single member of a population. “At the moment, this would go beyond the available resources regarding finance and amount of work. The only – and much cheaper – option is to analyse an entire population in one reaction,” explained last author Christian Schlötterer. This method, which he has established using the example of fruit flies, is called Pool-Seq. It is also routinely applied to detect transposons.

Existing analysis programmes, however, could not provide a precise result in this case. So far, each analysis has been biased by different factors such as the sequencing depth and the distance between paired reads.

For this purpose, Kofler developed the new software PoPoolationTE2. “If we sequence entire populations, each reaction provides a different result. The number of mixed individuals is always the same, but the single individuals differ,” explained Kofler. Furthermore, technical differences in the sample processing, among others, have influenced the analysis so far. PoPoolationTE2 is not affected by these factors. Thus, questions about the activity of transposons can be answered precisely for Pool-Seq reactions.

Interesting for cancer research

“The unbiased detection of transposon abundance enables a low-price comparison of populations from, for instance, different climate zones. In a next step, we can find out if a transposon is very active in a particular climate zone,” said Kofler. In principle, the bioinformatician has developed this new software for Pool-Seq. But as this method is also applied in medical research and diagnosis, the programme is also interesting for cancer research or the detection of neurological changes since transposons also occur in the brain.

Lab experiments confirm influencing factors

Lab experiments can indicate the factors influencing transposons. Last author Schlötterer explained these factors referring to an experiment with fruit flies: “We breed a hundred generations per population and expose them to different stimuli. We sequence at every tenth generation and determine if a stimulus has influenced the activity of the transposons. Thus, we can describe the activity of transposons in fast motion, so to say.” If the abundance is low, the scientists assume that the transposons are only starting to become more frequent. If a transposon reproduces very quickly in a particular population, this is called an invasion. If a jumping gene is detected in an entire population and not in another one, it could have been positively selected.

Service:
The article “PoPoolationTE2: comparative population genomics of transposable elements using Pool-Seq“ by Robert Kofler, Daniel Gómez-Sánchez and Christian Schlötterer was published in the journal Molecular Biology and Evolution.
http://mbe.oxfordjournals.org/content/early/2016/07/22/molbev.msw137.abstract

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Robert Kofler
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4333
robert.kofler@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat. Georg Mair | Veterinärmedizinische Universität Wien

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>