Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Signaling Role for Key Protein May Contribute to Wound Healing, Tumor Growth and Inflammatory Diseases

05.12.2014

New Signaling Role for Key Protein May Contribute to Wound Healing, Tumor Growth and Inflammatory Diseases

A key protein may represent a new way to use the immune system to speed healing and counter inflammatory, infectious and autoimmune diseases, according to study led by researchers at the Icahn School of Medicine at Mount Sinai and published in the December issue of Cell Reports.

The current study results revolve around proteinases, enzymes that break down proteins as part of cellular life. Matrix metalloproteinases or MMPs specifically target the extracellular matrix, the non-cell, structural framework within tissues.

Beyond that role, the new study found that one member of this family, MMP-2, has another signaling role related to the human immune system. It may shift a set of cells to become part of immune response that accelerates healing in some cases, but may worsen inflammatory disease in others.

Drug designers may be able to leverage the newfound MM-2 mechanisms to prevent the contribution of inflammatory signals to tumor growth and autoimmune diseases, or to promote wound healing.

“Our results show that MMP-2 uses a multitude of mechanisms to modulate the immune system,” says the study’s lead investigator Nina Bhardwaj, MD, PhD, Director of Immunotherapy, Tisch Cancer Center at Mount Sinai, Professor of Medicine, Hematology and Oncology, Icahn School of Medicine at Mount Sinai. “These data provides context to how this mechanism happens and could lead to novel treatments.”

The backdrop for the study finding is the body’s initial, vague reaction to any invading organism expands into a precise and massive counterattack. That expansion starts when a dendritic cell “swallows” a piece of any invader encountered, ferries it to the nearest lymph node and presents it there for notice by lymphocytes (B cells and T cells), the workhorses of the immune system.

DCs exposed to MMP-2 send signals that change gene expression such that more of a protein called OX40L is made, according to the study authors. OX40L is a signaling protein that links into a receptor protein on the surface of dendritic cells, like a key fitting into a lock, with their interaction changing the shape of the receptor such that other signals get sent. Among these is one that causes more immune cells within a certain part of the immune system, TH2 cells, to be made.

Though vital to effective immune responses to worms, Th2 cells have a dark side, in some cases triggering B cells to produce antibodies that recognize the body’s own cells as foreign and that destroy the kidneys of lupus patients and the joints of patients with rheumatoid arthritis. Shifting T cells in the Th2 path generally encourages inflammation.

If MMP-2 signaling leads to the presence of more Th2 T cells, it means Th2 cells will secrete more inflammatory TH2 cytokines like TNF-alpha, and interleukins 4 and 13, which fight parasite infections, but that can also contribute to autoimmune diseases if present in too large amounts. MMP-2 is also over-expressed in tumors, where it promotes cancer progression. This may in part be due to its ability to skew T cells toward Th2 differentiation, a process called type-2 polarization.

Th2 cells also contribute to wound healing because they produce cytokines, which fight infection and ultimately repair tissue. The tissue repair functions of MMP-2‘s may be due to the ability to drive Th2 immune response.

“MMP-2-mediated signaling either through direct injection or through mimics could promote wound healing but these proposed functions will require further investigation in disease-specific models,” says Dr. Bhardwaj. “Further discovery of new MMP-2 functions could lead to new reagents of inflammatory responses.”

The work was supported by a research grant from the National Institute of Health and a CLIP Award from the Cancer Research Institute. Researchers from Rockefeller University, Stanford University, New York University, Emory University and the Institut National de la Sante et de la Recherhe Medicale (INSERM) in Paris contributed to the study.

About the Mount Sinai Health System
The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12‐minority‐owned free‐standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org , or find Mount Sinai on Facebook, Twitter and YouTube.

Press Office | newswise

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>