Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Unit for dangerous hospital germs

07.07.2014

The antibiotic-resistant bacterium Acinetobacter baumanii often causes fatal nosocomial infections.

A research unit, approved by the German Research Foundation, under the leadership of researchers based in Frankfurt, has made it their goal to throw light on the infection process and the adaptation mechanisms of the germ. The fundamental insights gained by the research unit will pave the road for the clinical management of this germ.

Multi-drug resistant bacteria have increased dramatically in hospitals in recent years and present immense challenges to staff and patients, often with fatal results. In addition to well-known bacteria such as Staphylococcus aureus, new pathogens have come to light in the past few years. One of these is the Gram negative Acinetobacter baumannii.

The German Research Foundation has now approved a new Research Unit, under the leadership of researchers based in Frankfurt, that will unravel the molecular basis for the dramatic increase in multi-drug resistant A. baumannii strains.

A. baumannii has become a common and excellently adapted nosocomial pathogen in developed countries. It causes 5% to 10% of nosocomial pneumonias and 2% to 10% of all infections in the intensive care wards in European clinics. The increase in antibiotic resistance is alarming. The germ belong to the group of six "ESKAPE" organisms that evade antibiotic treatment. Therefore, infections with A. baumannii are frequently fatal.

Several institutes of the Goethe University are involved in the research group 2251 "Adaptation and persistence of Acinetobacter baumannii": the Department of Molecular Microbiology & Bioenergetics, the Institute of Medical Microbiology and Hygiene, the Institute for Cell Biology and Neuroscience, and the Institute for Biochemistry.

The Universities of Cologne and Regenburg, as well as the Robert Koch Institute, are additional collaborators. The researchers will study the biology, infection process and the basis for multi-drug resistance of A. baumannii using a highly interdisciplinary approach. The objective is to determine how it has adapted so well to the hospital environment and what the multi-drug resistance is based on. The answers to these questions will facilitate the treatment related to this dramatically increasing nosocomial pathogen.

Information: Prof. Volker Müller, Coordinator of the Research Unit 2251, Molecular Microbiology and Bioenergetics, Riedberg Campus, Tel: (069)798-29507; vmueller@bio.uni-frankfurt.de., http://www.bio.uni-frankfurt.de/51172482

The Goethe University is an institution with particularly strong research capabilities based in the European financial metropolis of Frankfurt. It celebrates its 100th year of existence in 2014. The university was founded in 1914 through private means from liberally orientated citizens of Frankfurt and has devoted itself to fulfilling its motto "Science for the Society" in its research and teaching activity right up to the present day. Many of the founding donors were of Jewish origin. During the last 100 years, the pioneering services offered by the Goethe University have impacted the fields of social, societal and economic sciences, chemistry, quantum physics, neurological research and labour law. On January 1st, 2008, it achieved an exceptional degree of independence as it returned to its historical roots as a privately funded university. Today it is one of the ten universities that are most successful in obtaining external research funding and one of the three largest universities in Germany with centres of excellence in medicine, life sciences and humanities.

Publisher: The President of Goethe-University Frankfurt/Main. Editor: Dr. Anke Sauter, Marketing und Communication, Grüneburgplatz 1, 60323 Frankfurt am Main, Phone 0049(0)69-798-12478, 0049(0)69-798-28530

Weitere Informationen:

http://www.uni-frankfurt.de

Dr. Anne Hardy-Vennen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Family tree for orchids explains their astonishing variability
04.09.2015 | University of Wisconsin-Madison

nachricht Gone with the wind: A new project focusses on atmospheric input of phosphorus into the Baltic Sea
04.09.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>