Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Research Unit for dangerous hospital germs


The antibiotic-resistant bacterium Acinetobacter baumanii often causes fatal nosocomial infections.

A research unit, approved by the German Research Foundation, under the leadership of researchers based in Frankfurt, has made it their goal to throw light on the infection process and the adaptation mechanisms of the germ. The fundamental insights gained by the research unit will pave the road for the clinical management of this germ.

Multi-drug resistant bacteria have increased dramatically in hospitals in recent years and present immense challenges to staff and patients, often with fatal results. In addition to well-known bacteria such as Staphylococcus aureus, new pathogens have come to light in the past few years. One of these is the Gram negative Acinetobacter baumannii.

The German Research Foundation has now approved a new Research Unit, under the leadership of researchers based in Frankfurt, that will unravel the molecular basis for the dramatic increase in multi-drug resistant A. baumannii strains.

A. baumannii has become a common and excellently adapted nosocomial pathogen in developed countries. It causes 5% to 10% of nosocomial pneumonias and 2% to 10% of all infections in the intensive care wards in European clinics. The increase in antibiotic resistance is alarming. The germ belong to the group of six "ESKAPE" organisms that evade antibiotic treatment. Therefore, infections with A. baumannii are frequently fatal.

Several institutes of the Goethe University are involved in the research group 2251 "Adaptation and persistence of Acinetobacter baumannii": the Department of Molecular Microbiology & Bioenergetics, the Institute of Medical Microbiology and Hygiene, the Institute for Cell Biology and Neuroscience, and the Institute for Biochemistry.

The Universities of Cologne and Regenburg, as well as the Robert Koch Institute, are additional collaborators. The researchers will study the biology, infection process and the basis for multi-drug resistance of A. baumannii using a highly interdisciplinary approach. The objective is to determine how it has adapted so well to the hospital environment and what the multi-drug resistance is based on. The answers to these questions will facilitate the treatment related to this dramatically increasing nosocomial pathogen.

Information: Prof. Volker Müller, Coordinator of the Research Unit 2251, Molecular Microbiology and Bioenergetics, Riedberg Campus, Tel: (069)798-29507;,

The Goethe University is an institution with particularly strong research capabilities based in the European financial metropolis of Frankfurt. It celebrates its 100th year of existence in 2014. The university was founded in 1914 through private means from liberally orientated citizens of Frankfurt and has devoted itself to fulfilling its motto "Science for the Society" in its research and teaching activity right up to the present day. Many of the founding donors were of Jewish origin. During the last 100 years, the pioneering services offered by the Goethe University have impacted the fields of social, societal and economic sciences, chemistry, quantum physics, neurological research and labour law. On January 1st, 2008, it achieved an exceptional degree of independence as it returned to its historical roots as a privately funded university. Today it is one of the ten universities that are most successful in obtaining external research funding and one of the three largest universities in Germany with centres of excellence in medicine, life sciences and humanities.

Publisher: The President of Goethe-University Frankfurt/Main. Editor: Dr. Anke Sauter, Marketing und Communication, Grüneburgplatz 1, 60323 Frankfurt am Main, Phone 0049(0)69-798-12478, 0049(0)69-798-28530

Weitere Informationen:

Dr. Anne Hardy-Vennen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes
07.10.2015 | Karl-Franzens-Universität Graz

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Kick-off for a new era of precision astronomy

07.10.2015 | Physics and Astronomy

Distinguishing coincidence from causality: connections in the climate system

07.10.2015 | Earth Sciences

Finding cannabinoids in hair does not prove cannabis consumption

07.10.2015 | Health and Medicine

More VideoLinks >>>