Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research project about the genetic modification of cancer cells

21.03.2014

Better understanding of the generation of leukaemias

Tumour cells shut down certain genes in the course of the progressing degeneration or mutate these, a process that considerably accelerates the growth of the tumour.


Extract from the structure of the Dnmt3a DNA methyl transferase (red, blue and cyan) with DNA (green). The positions of mutations in tumours are represented by red and orange balls.

Illustration: University of Stuttgart

An important role in this process is played by epigenetic factors and thereby in particular DNA methyl transferase (Dnmts), i.e. enzymes that transmit methyl groups on nucleic bases of the DNA. A research group at the Chair for Biochemistry at the University of Stuttgart (Head Prof. Albert Jeltsch) is now investigating in a new project the influence of mutations in the DNA methyl transferase Dnmt3a, that are observed in many leukaemias. The scientists want to elucidate how these modifications contribute towards cancer developing. 

The fact that tumour cells shut down or mutate in the course of progressing degeneration has been known for years. Traditionally so-called tumour suppressor genes are affected by this process, that prevent cells with damages in the genome dividing and ultimately drive these cells to a controlled cell death.

However, genes are also frequently damaged or shut down, whose products are involved in the repair of DNA damages. The loss of these factors leads to an increase in mutations in the affected cells, promoting the further progression of tumours. 

The rapid development of DNA sequencing technologies has, among other things, led to the identification of many additional mutations in tumour cells. A better understanding of these somatic mutations can help to better understand the process of the tumour developing and to develop targeted therapies for defined sub-types of tumours. A new group of somatically mutated genes are so-called “epigenetic“ factors.

These factors control how strongly genes are transcribed and ultimately through this regulate how the information of the genome is implemented. This group also includes DNA methyl transferase that transmits the methyl groups to the DNA and plays a decisive role in the development of human cells.

It was recently shown that the DNA methyl transferase Dnmt3a is a focal point of somatic tumour mutations in many leukaemias. In this way, up to 30 percent of the patients show a certain mutation in the Dnmt3a gene in a sub-group of leukaemias. This mutation brings about the targeted exchange of an amino acid into another in the protein, comprising a total of 912 amino acids. 

Building on its 10 years of experience in investigating Dnmt3a, the workgroup Jeltsch is planning to investigate the effects of these and other tumour mutations in Dnmt3a in the project financed by the German Research Association DFG with the focus on the “Epigenetic Regulation of the normal haematopoiesis and its dysregulation in myeloid neoplasia“.

The results of this project will help to elucidate the tumour-inducing effect of somatic Dnmt3a tumour mutations and to understand how the modifications in the DNA methylation lead to cancer.

Further information:
Prof. Albert Jeltsch, University of Stuttgart, Chair for Biochemistry, 0711/685-64390
Email albert.jeltsch (at) ibc.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart

Further reports about: Biochemistry DNA amino developing genes methyl modification modifications mutate mutations somatic tumour tumours

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>