Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research project about the genetic modification of cancer cells

21.03.2014

Better understanding of the generation of leukaemias

Tumour cells shut down certain genes in the course of the progressing degeneration or mutate these, a process that considerably accelerates the growth of the tumour.


Extract from the structure of the Dnmt3a DNA methyl transferase (red, blue and cyan) with DNA (green). The positions of mutations in tumours are represented by red and orange balls.

Illustration: University of Stuttgart

An important role in this process is played by epigenetic factors and thereby in particular DNA methyl transferase (Dnmts), i.e. enzymes that transmit methyl groups on nucleic bases of the DNA. A research group at the Chair for Biochemistry at the University of Stuttgart (Head Prof. Albert Jeltsch) is now investigating in a new project the influence of mutations in the DNA methyl transferase Dnmt3a, that are observed in many leukaemias. The scientists want to elucidate how these modifications contribute towards cancer developing. 

The fact that tumour cells shut down or mutate in the course of progressing degeneration has been known for years. Traditionally so-called tumour suppressor genes are affected by this process, that prevent cells with damages in the genome dividing and ultimately drive these cells to a controlled cell death.

However, genes are also frequently damaged or shut down, whose products are involved in the repair of DNA damages. The loss of these factors leads to an increase in mutations in the affected cells, promoting the further progression of tumours. 

The rapid development of DNA sequencing technologies has, among other things, led to the identification of many additional mutations in tumour cells. A better understanding of these somatic mutations can help to better understand the process of the tumour developing and to develop targeted therapies for defined sub-types of tumours. A new group of somatically mutated genes are so-called “epigenetic“ factors.

These factors control how strongly genes are transcribed and ultimately through this regulate how the information of the genome is implemented. This group also includes DNA methyl transferase that transmits the methyl groups to the DNA and plays a decisive role in the development of human cells.

It was recently shown that the DNA methyl transferase Dnmt3a is a focal point of somatic tumour mutations in many leukaemias. In this way, up to 30 percent of the patients show a certain mutation in the Dnmt3a gene in a sub-group of leukaemias. This mutation brings about the targeted exchange of an amino acid into another in the protein, comprising a total of 912 amino acids. 

Building on its 10 years of experience in investigating Dnmt3a, the workgroup Jeltsch is planning to investigate the effects of these and other tumour mutations in Dnmt3a in the project financed by the German Research Association DFG with the focus on the “Epigenetic Regulation of the normal haematopoiesis and its dysregulation in myeloid neoplasia“.

The results of this project will help to elucidate the tumour-inducing effect of somatic Dnmt3a tumour mutations and to understand how the modifications in the DNA methylation lead to cancer.

Further information:
Prof. Albert Jeltsch, University of Stuttgart, Chair for Biochemistry, 0711/685-64390
Email albert.jeltsch (at) ibc.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart

Further reports about: Biochemistry DNA amino developing genes methyl modification modifications mutate mutations somatic tumour tumours

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>