Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research links body clocks to chronic lung diseases

18.03.2014

The body clock’s natural rhythm could be utilized to improve current therapies to delay the onset of chronic lung diseases.

Internal biological timers (circadian clocks) are found in almost all living things driving diverse processes such as sleep/wake cycles in humans to leaf movement in plants. In mammals including humans, circadian clocks are found in most cells and tissues of the body, and orchestrate daily rhythms in our physiology.

The research team’s ground breaking findings, which are being published in Genes & Development, have for the first time found that the circadian clock in the mouse lung rhythmically switches on and off genes controlling the antioxidant defense pathway. This 24 hourly rhythm enables the lungs to anticipate and withstand daily exposure to pollutants.

The research was led by Dr Qing-Jun Meng from The University of Manchester who is also a Medical Research Council (MRC) Research Fellow. He has been studying body clocks for a number of years and has been awarded an MRC Career Development Award to establish the relationship between the disruption of circadian rhythms and the susceptibility to human diseases, especially those associated with old age.

... more about:
»MRC »ageing »diseases »drugs »fibrosis »genes »pathway »pulmonary »rhythm

Dr Meng said: “We used a mouse model that mimics human pulmonary fibrosis, and found that an oxidative and fibrotic challenge delivered to the lungs during the night phase (when mice are active) causes more severe lung damages than the same challenge administered during the day which is a mouse’s resting phase.”

This means that the rhythm of this lung clock gives an indication of more suitable times of the day for drugs to be administered to patients suffering from oxidative/fibrotic diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease.

Dr Meng continued: “Our findings show that timed administration of the antioxidant compound sulforaphane, effectively attenuates the severity of the lung fibrosis in this mouse model.”  
In other words the research suggests that taking drug treatments for oxidative and fibrotic diseases according to the lung clock time could increase their effectiveness, which would allow a lower dosage and consequently reduce side effects.

Dr Vanja Pekovic-Vaughan, who was part of the University’s research team, said: “This research is the first to show that a functioning clock in the lung is essential to maintain the protective tissue function against oxidative stress and fibrotic challenges. We envisage a scenario whereby chronic rhythm disruption (e.g., during ageing or shift work) may compromise the temporal coordination of the antioxidant pathway, contributing to human disease.” 

This latest study is part of on-going research that is exploring how chronic disruption to body clocks by changes like ageing or shift work contribute to a number of conditions such as osteoarthritis, cardiovascular disease, breast cancer, and mood disorder. 
Dr Meng said: “Our next step is to test our theory that similar rhythmic activity of the antioxidant defence pathway also operates in human lungs.  This will enable us to translate our findings and identify the proper clock time to treat chronic lung diseases that are known to involve oxidative stress.

“Funded by an MRC Fellowship Partnership Award, we have teamed up with GlaxoSmithKline to explore the potential of utilizing the body clock mechanisms to improve the efficiency of the current antioxidant compounds for diseases. Timing the delivery of drugs - so-called ’chrono-therapy’ or ’chrono-pharmacology’ - has already demonstrated clinical benefits in treatment of cancer and arthritis,” he said. 

Professor Stuart Farrow, a Director in the Respiratory therapy area at GSK (who is also the industrial partner for Dr Meng on the MRC Fellowship Partnership Award), commented: “Chronic lung diseases are prevalent and debilitating, and continue to be an important area of unmet medical need. This exciting new research reveals an opportunity to harness the body clock to provide valuable benefit to patients.” 

Notes for editors
Kath Paddison
Media Relations Officer
Faculty of Life Sciences
The University of Manchester
 
Tel. +44 (0)161 275 2111
Email: kath.paddison@manchester.ac.uk


Please contact us for a copy of the paper ‘The circadian clock regulates rhythmic activation of the NRF2/glutathionemediated antioxidant defense pathway to modulate pulmonary fibrosis’ by Vanja Pekovic-Vaughan, Julie Gibbs, Hikari Yoshitane, Nan Yang, Dharshika Pathiranage, Baoqiang Guo, Aya Sagami, Keiko Taguchi, David Bechtold, Andrew Loudon, Masayuki Yamamoto, Jefferson Chan, Gijsbertus T.J. van der Horst, Yoshitaka Fukada, Qing-Jun Meng

Kath Paddison | EurekAlert!
Further information:
http://www.manchester.ac.uk

Further reports about: MRC ageing diseases drugs fibrosis genes pathway pulmonary rhythm

More articles from Life Sciences:

nachricht More detailed analysis of how cells react to stress
08.02.2016 | Universität Zürich

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>