Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research centre focuses on development of brain and behaviour


Why do some people become depressed under stress and others not? Why are some older adults mentally fit whereas others are afflicted by cognitive decline?

To provide answers to these questions, the Max Planck Society and University College London have launched the Max Planck UCL Centre for Computational Psychiatry and Ageing Research.

What emotions have in common is that they affect different organisational levels in the brain, from from genes to protein synthesis on to neurons and neural networks. © MPG / iStock

Psychiatric disorders such as depression, schizophrenia, or autism often escape successful treatment. Some major molecular and structural changes in the brain have been identified, but viable accounts of how these changes link to behaviour are missing.

Likewise, the associations between changes in brain and behaviour in the course of normal and pathological cognitive aging are not well understood. The central goal of the newly established Max Planck UCL Centre for Computational Psychiatry and Ageing Research is to better understand the causes of psychiatric disorders as well as the causes of differential cognitive development in adulthood and old age.

"At the Max Planck UCL Center for Computational Psychiatry and Ageing Research, we bring together top international researchers in the fields of lifespan psychology and neurology, which enables us to bridge the gap between experimental and clinical research," says Peter Gruss, President of the Max Planck Society. "Such an outstanding cooperation is only possible between institutions of great international standing and prestige, such as the Max Planck Society and University College London."

The processes related to psychiatric disorders and to normal cognitive function alter the brain at multiple level of analysis, from genes to protein synthesis and on to neurons and neural networks. Computational models are a powerful means of bridging the gaps between these levels. Scientists can alter models of normally behaving younger adults to simulate the alleged causes of cognitive aging or psychiatric disorders (e.g., depression), and then check whether such alterations result in predicted behavioural   deficiencies that resemble those observed in older adults, or the disease state of interest (e.g., depressed patients)

Scientists at the Centre will relate data on the structure and functioning of the brain to detailed behavioural observations of individuals and deduce prognoses for their development. The Centre’s findings will provide information on how cognitive functioning can be maintained into old age, and on how psychiatric disorders can be better recognized and treated more efficiently.

Two Co-Directors form the Leading Team of the Centre: Ray Dolan for University College London and Ulman Lindenberger for the Max Planck Society. In addition, a Coordination Committee represents the four research institutions most directly involved in the Centre: the Gatsby Computational Neuroscience Unit (Peter Dayan), the Max Planck Institute for Cognitive and Brain Sciences (Arno Villringer), the Max Planck Institute for Human Development (Ulman Lindenberger), and the Wellcome Trust Centre for Neuroimaging (Ray Dolan). The Centre has two sites, one in London and the other in Berlin. The London site is located at Russell Square, in close vicinity to the Wellcome Trust Centre for Neuroimaging. The Berlin site is housed at the Max Planck Institute for Human Development.

The ceremony celebrating the opening of the new Centre will be held on April 1, 2014, at the Royal Society in London. Welcoming words will be spoken by Michael Arthur, the President and Provost of University College London, Peter Gruss, the President of the Max Planck Society, David Willetts, Minister of State for Universities and Science, United Kingdom, Rudolf Adam, Chargé d’Affaires a.i. of the German Embassy London, Ray Dolan, Director at the Wellcome Trust Centre for Neuroimaging, and Ulman Lindenberger, Director at the Max Planck Institute for Human Development. Nobel Prize laureate Eric Kandel, Director at The Kavli Institute for Brain Science, Columbia University, New York, will hold the keynote lecture.

Collaboration between the Max Planck Society and University College London


Kerstin Skork

Public Relations

Max Planck Institute for Human Development, Berlin

Phone: +49 30 8240-6211


Nicole Siller

Phone: +49 30 82406-284
Fax: +49 30 824-9939

Kerstin Skork | Max-Planck-Institute

Further reports about: Brain Development Human Neuroimaging Psychiatry Trust UCL behaviour behavioural cognitive disorders

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>