Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New rapid test for evaluating fluoride in drinking water

01.04.2014

The addition of fluoride to drinking water or toothpaste is widespread and is mainly used for dental health and as a preventative measure against bone diseases.

However, an excessively high concentration of fluoride can lead to health problems. Clear symptoms of this fluorosis, that occurs in developing countries in particular, are brownish-yellow stains on the teeth.

Fluorinated drinking water is not being monitored everywhere so that children in particular can ingest too much fluoride. BAM Federal Institute for Materials Research and Testing has developed a very simple rapid colour test, which can help determine the fluoride concentration more easily in the future.

A change in the colour of a paper strip shows how much fluoride is dissolved in the water, similar to a litmus test to determine the pH value. The concentration is indicated by yellow-green dots, the darker the spot, the more fluoride is present. A dye developed by BAM is used in the procedure.

"This BODIPY amidothiourea dye is applied as a small spot to a strip of nitrocellulose that responds to the fluoride ion" says Pichandi Ashokkumar, who, together with Knut Rurack, has developed the test.

The paper strip is then immersed in a glass of water for example. The analyst can read the concentration by the change in the perceived colour and the test strip is reusable because of the particular chemical dye chosen. As simple as it sounds, it was very difficult to implement because fluoride is bound to thiocarbamide by hydrogen bonds.

Bonding triggers an electron transfer, which weakens the dye’s fluorescence so that the dye will appear darker. "The trick then was to develop a process that, in spite of the aqueous environment, still binds the fluoride and not the water's oxygen to the thiocarbamide" says project manager Knut Rurack. As the tests indicate, the scientists have succeeded. In order to evaluate the colour change better than with the human eye, the test strip’s colour may also be detected with the built-in camera of a mobile phone.

Fluorination of drinking water is common practice. In Europe this is practiced in the UK, Ireland and Switzerland and the U.S. also fluorinates the drinking water. In 2011, the U.S. Environmental Protection Agency (EPA) reduced the benchmark for fluoride in drinking water from 1 to 0.7 parts per million (ppm) and thus joined other countries.

The detection limit of the new fluoride test is 0.2 ppm. The test was conducted using different water samples, including tap and sea water. "The test is not disturbed by other ions in tap water or salt water," says Rurack. However, too high a concentration of phosphate, as in some toothpastes, may cause problems. The scientists envisage a potentially large field of application for their testes especially in Asia and Africa.

Contact:
Dr. rer. nat. Knut Rurack
Department 1 Analytical Chemistry; Reference Materials
Email: Knut.Rurack@bam.de

"Test-Strip-Based Fluorometric Detection of Fluoride in AqueousMedia with a BODIPY-Linked Hydrogen-Bonding Receptor", Pichandi Ashokkumar, Hardy Weißhoff, Werner Kraus and Knut Rurack, Angew. Chem. Int. Ed. 2014, 53, 2225-2229

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft

Further reports about: BAM Protection concentration drinking glass ions phosphate procedure

More articles from Life Sciences:

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>