Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New principle in cancer treatment found

20.03.2014

Scientists of the Cluster of Excellence CECAD, University of Cologne, have developed a new strategy for cancer treatment.

Tumor growth is dependent on attracting blood vessels, that supply nutrients and oxygen and dispose of metabolic waste. An insufficient blood supply results in significantly reduced tumor growth.

The poisoning of the mitochondria, the cell´s power-plants, inhibits blood vessel growth, but has no effects on existing vessels. For this purpose the scientists used the weak mitochondrial poison Embelin. Selective inhibition of mitochondrial function could represent a fundamentally new therapeutic approach that may help advance the development of cancer treatments.

Cologne, 2014, March 20. A team of researchers from five CECAD departments led by PD Dr. Hamid Kashkar (University Hospital of Cologne, Institute of Clinical Microbiology, Immunology and Hygiene) and Dr. Oliver Coutelle (University Hospital of Cologne, Department of Internal Medicine I) have found a new principle for the treatment of proliferating solid tumors.

Tumors are highly dependent on the growth of blood vessels supplying nutrients and oxygen and excreting CO2 and metabolic waste products. Accordingly, the inhibition of tumor blood vessels by blocking specific vascular growth factors is a strategy that is already being used successfully to treat tumors today.

In close collaboration with Dr. Hue-Tran Hornig-Do and Prof. Dr. Rudolf Wiesner (University Hospital of Cologne, Institut of Vegetative Physiology), the CECCAD team reports in a recent article in EMBO Mol Med, that Embelin, a substance that is used in African traditional medicine, inhibits vessel growth by a novel mechanism.

They showed that Embelin acts as a weak poison for mitochondria, the power plants of cells. They demonstrated that growing blood vessels – but not resting normal blood vessels – are highly dependent on mitochondrial function and have little capacity to compensate for mitochondrial dysfunction induced by Embelin. Together their findings show that Embelin significantly slowed the growth of tumors by inhibiting their blood supply, but had little effect on existing normal blood vessels and other tissues at the concentrations required.

The study was supported by further research in collaboration with Prof. Sabine Eming (University of Cologne, Dermatology). Wound healing experiments demonstrated delayed closure of wounds in the presence of Embelin due to the lack of blood vessel in-growth, providing additional evidence for the effectiveness of Embelin in inhibiting new blood vessel formation.

Experiments in cooperation with Prof. Aleksandra Trifunovic ( CECAD) provide additional support for the dependence of new blood vessels on adequate mitochondrial function. In particular, mitochondrial dysfunction induced by mutation in mitochondrial DNA severely impaired the capacity for vascularisation of implanted artificial plugs, designed to attract new blood vessels.

In summary, the scientists were able to prove that impairment of mitochondrial function provides a fundamentally new approach to inhibit blood vessel growth in solid tumors with little side effects on normal body functions. Prof. Dr. Rudolf Wiesner: „We all feel excited about this new principle that will provide new approaches in the fight against cancer.“

Contact:
Dr. Oliver Coutelle
Email: oliver.coutelle@uk-koeln.de
or
PD Dr. Hamid Kashkar
Email: h.kashkar@uni-koeln.de

Astrid Bergmeister
Leiterin CECAD PR & Marketing
Tel. + 49 (0) 221-478-84043
Email: astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://www.cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

Further reports about: CECAD blood metabolic mitochondrial nutrients poison tumors vessel

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>