Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New principle in cancer treatment found

20.03.2014

Scientists of the Cluster of Excellence CECAD, University of Cologne, have developed a new strategy for cancer treatment.

Tumor growth is dependent on attracting blood vessels, that supply nutrients and oxygen and dispose of metabolic waste. An insufficient blood supply results in significantly reduced tumor growth.

The poisoning of the mitochondria, the cell´s power-plants, inhibits blood vessel growth, but has no effects on existing vessels. For this purpose the scientists used the weak mitochondrial poison Embelin. Selective inhibition of mitochondrial function could represent a fundamentally new therapeutic approach that may help advance the development of cancer treatments.

Cologne, 2014, March 20. A team of researchers from five CECAD departments led by PD Dr. Hamid Kashkar (University Hospital of Cologne, Institute of Clinical Microbiology, Immunology and Hygiene) and Dr. Oliver Coutelle (University Hospital of Cologne, Department of Internal Medicine I) have found a new principle for the treatment of proliferating solid tumors.

Tumors are highly dependent on the growth of blood vessels supplying nutrients and oxygen and excreting CO2 and metabolic waste products. Accordingly, the inhibition of tumor blood vessels by blocking specific vascular growth factors is a strategy that is already being used successfully to treat tumors today.

In close collaboration with Dr. Hue-Tran Hornig-Do and Prof. Dr. Rudolf Wiesner (University Hospital of Cologne, Institut of Vegetative Physiology), the CECCAD team reports in a recent article in EMBO Mol Med, that Embelin, a substance that is used in African traditional medicine, inhibits vessel growth by a novel mechanism.

They showed that Embelin acts as a weak poison for mitochondria, the power plants of cells. They demonstrated that growing blood vessels – but not resting normal blood vessels – are highly dependent on mitochondrial function and have little capacity to compensate for mitochondrial dysfunction induced by Embelin. Together their findings show that Embelin significantly slowed the growth of tumors by inhibiting their blood supply, but had little effect on existing normal blood vessels and other tissues at the concentrations required.

The study was supported by further research in collaboration with Prof. Sabine Eming (University of Cologne, Dermatology). Wound healing experiments demonstrated delayed closure of wounds in the presence of Embelin due to the lack of blood vessel in-growth, providing additional evidence for the effectiveness of Embelin in inhibiting new blood vessel formation.

Experiments in cooperation with Prof. Aleksandra Trifunovic ( CECAD) provide additional support for the dependence of new blood vessels on adequate mitochondrial function. In particular, mitochondrial dysfunction induced by mutation in mitochondrial DNA severely impaired the capacity for vascularisation of implanted artificial plugs, designed to attract new blood vessels.

In summary, the scientists were able to prove that impairment of mitochondrial function provides a fundamentally new approach to inhibit blood vessel growth in solid tumors with little side effects on normal body functions. Prof. Dr. Rudolf Wiesner: „We all feel excited about this new principle that will provide new approaches in the fight against cancer.“

Contact:
Dr. Oliver Coutelle
Email: oliver.coutelle@uk-koeln.de
or
PD Dr. Hamid Kashkar
Email: h.kashkar@uni-koeln.de

Astrid Bergmeister
Leiterin CECAD PR & Marketing
Tel. + 49 (0) 221-478-84043
Email: astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://www.cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

Further reports about: CECAD blood metabolic mitochondrial nutrients poison tumors vessel

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>