Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New principle in cancer treatment found


Scientists of the Cluster of Excellence CECAD, University of Cologne, have developed a new strategy for cancer treatment.

Tumor growth is dependent on attracting blood vessels, that supply nutrients and oxygen and dispose of metabolic waste. An insufficient blood supply results in significantly reduced tumor growth.

The poisoning of the mitochondria, the cell´s power-plants, inhibits blood vessel growth, but has no effects on existing vessels. For this purpose the scientists used the weak mitochondrial poison Embelin. Selective inhibition of mitochondrial function could represent a fundamentally new therapeutic approach that may help advance the development of cancer treatments.

Cologne, 2014, March 20. A team of researchers from five CECAD departments led by PD Dr. Hamid Kashkar (University Hospital of Cologne, Institute of Clinical Microbiology, Immunology and Hygiene) and Dr. Oliver Coutelle (University Hospital of Cologne, Department of Internal Medicine I) have found a new principle for the treatment of proliferating solid tumors.

Tumors are highly dependent on the growth of blood vessels supplying nutrients and oxygen and excreting CO2 and metabolic waste products. Accordingly, the inhibition of tumor blood vessels by blocking specific vascular growth factors is a strategy that is already being used successfully to treat tumors today.

In close collaboration with Dr. Hue-Tran Hornig-Do and Prof. Dr. Rudolf Wiesner (University Hospital of Cologne, Institut of Vegetative Physiology), the CECCAD team reports in a recent article in EMBO Mol Med, that Embelin, a substance that is used in African traditional medicine, inhibits vessel growth by a novel mechanism.

They showed that Embelin acts as a weak poison for mitochondria, the power plants of cells. They demonstrated that growing blood vessels – but not resting normal blood vessels – are highly dependent on mitochondrial function and have little capacity to compensate for mitochondrial dysfunction induced by Embelin. Together their findings show that Embelin significantly slowed the growth of tumors by inhibiting their blood supply, but had little effect on existing normal blood vessels and other tissues at the concentrations required.

The study was supported by further research in collaboration with Prof. Sabine Eming (University of Cologne, Dermatology). Wound healing experiments demonstrated delayed closure of wounds in the presence of Embelin due to the lack of blood vessel in-growth, providing additional evidence for the effectiveness of Embelin in inhibiting new blood vessel formation.

Experiments in cooperation with Prof. Aleksandra Trifunovic ( CECAD) provide additional support for the dependence of new blood vessels on adequate mitochondrial function. In particular, mitochondrial dysfunction induced by mutation in mitochondrial DNA severely impaired the capacity for vascularisation of implanted artificial plugs, designed to attract new blood vessels.

In summary, the scientists were able to prove that impairment of mitochondrial function provides a fundamentally new approach to inhibit blood vessel growth in solid tumors with little side effects on normal body functions. Prof. Dr. Rudolf Wiesner: „We all feel excited about this new principle that will provide new approaches in the fight against cancer.“

Dr. Oliver Coutelle
PD Dr. Hamid Kashkar

Astrid Bergmeister
Leiterin CECAD PR & Marketing
Tel. + 49 (0) 221-478-84043

Weitere Informationen:

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

Further reports about: CECAD blood metabolic mitochondrial nutrients poison tumors vessel

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>