Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NSF and NBC Learn video series shows off big discoveries from tiny particles

01.02.2016

Learn how researchers use atoms and molecules to build future technology

Why are things so small, so significant? A new video series created by the National Science Foundation (NSF) and NBC Learn, the educational arm of NBCUniversal News, sheds light on this question.


Quantum dots (QD) are nanoscale crystals that can emit light at different wavelengths creating brilliant colors. Scientists can control the size of a QD in order to determine which color it emits. This array moves from blue emitting QD with radii of 2-3 nm up to red QD with radii of 5-6 nm. Learn more by watching episode 4 of Nanotechnology: Super Small Science.

Credit: NSF & NBC Learn


By exposing a glass plate placed inside a vacuum chamber to the correct amount of heat and carbon mixed gas, scientists can cause forests of carbon nanotubes to grow on its surface. These carbon nanotubes absorb light and can help reduce glare on screens.

Credit: NSF & NBC Learn

"Nanotechnology: Super Small Science" is a six-part series and shows viewers how atoms and molecules that are thousands of times smaller than the width of a human hair can be used as building blocks to create future technology. The series features a dozen world class American researchers, including quantum physicist and National Medal of Science winner Paul Alivisatos.

"Today we are learning to rearrange the basic atomic and molecular building blocks -- foundational technology for understanding nature and creating things that were not possible before," said Mihail Roco, senior adviser of science and engineering at NSF and a key architect of the National Nanotechnology Initiative (NNI). "These videos, produced while nanoscience is still in formation with so much potential, tell stories that will inspire younger generations and future results."

Narrated by NBC News and MSNBC anchor Kate Snow, "Nanotechnology: Super Small Science" will be available through NBC affiliate stations and can also be seen for free online at NBCLearn.com, NSF.gov and Science360.gov.

"We're proud to launch an original series that shows viewers how scientists and engineers manipulate material only billionths of a meter in size, and the powerful impact that can have on the world around them," said Soraya Gage, vice president and general manager of NBC Learn. "Through our partnership with the National Science Foundation, we're using our digital platform and journalistic expertise to explore how nanotechnology advances innovation in fields such as medicine, energy and electronics."

"For 15 years, more discoveries have come from Nanotechnology than any other field of science and engineering. Now its discoveries are penetrating all aspects of society -- new industries, medicine, agriculture and the management of natural resources," added Roco.

In the videos, viewers learn how scientists use nanotechnology to capture energy from the sun, increase the power of smaller microchips and computers, build structures that are lightweight and resilient and much more:

Nanotechnology: Harnessing the Nanoscale - Why is something only billionths of a meter in size so important? Dawn Bonnell at the University of Pennsylvania shows how the ability to control and manipulate material at this extremely small scale is having a big impact around the world in medicine, energy and electronics.

Nanotechnology: A Powerful Solution - Paul Alivisatos' team at the University of California, Berkeley, is working to develop a new type of solar cell using nano-sized crystals called quantum dots. Quantum dots are already helping to produce brighter, more vivid color in displays. The ability of solar cells to efficiently process energy in the form of light also makes them an ideal solution to our energy problems.

Nanotechnology: Nanoelectronics - You may have nanotechnology in your pocket and not even know it. Today's smartphones are much smaller than computers of the past and yet significantly more powerful, thanks to nanotechnology. Tom Theis with the Semiconductor Research Corporation and IBM, and Ana Claudia Arias at the University of California, Berkeley, explain how nanotechnology has already changed our lives and the exciting possibilities for the future.

Nanotechnology at the Surface - How could something only billionths of a meter thick defend against water, dirt, wear and even bacteria? Working at the nanoscale, scientists and engineers, like Jay Guo of the University of Michigan, are creating protective nanoscale coatings and layers. These surfaces have applications in energy, electronics, medicine and could even be used to make a plane invisible.

Nanotechnology: Nanoarchitech - Caltech's Julia Greer is proving that using big and heavy materials is not the only way to build strong, robust structures. Beginning at the nanoscale, her group is constructing materials that are more than 99 percent air yet strong and resilient. These new materials are breaking the rules by behaving in very unexpected ways.

Nanotechnology: Nano-Enabled Sensors and Nanoparticles - Some of the biggest advances in medical technology may soon come from devices built on the nanoscale. Donglei Fan with the University of Texas at Austin and Paula Hammond with Massachusetts Institute of Technology discuss how their use of nanotechnology may one day sense, diagnose and even treat cancer.

"We want to spread the excitement of the nano world -- especially to the younger generation -- for they will start to realize its extraordinary potential," said Roco.

Media Contact

Lisa-Joy Zgorski
lzgorski@nsf.gov
703-292-8311

 @NSF

http://www.nsf.gov 

Lisa-Joy Zgorski | EurekAlert!

More articles from Life Sciences:

nachricht Building a better battery
29.06.2016 | Texas A&M University

nachricht New way out: Researchers show how stem cells exit bloodstream
29.06.2016 | North Carolina State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>