Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NSF and NBC Learn video series shows off big discoveries from tiny particles

01.02.2016

Learn how researchers use atoms and molecules to build future technology

Why are things so small, so significant? A new video series created by the National Science Foundation (NSF) and NBC Learn, the educational arm of NBCUniversal News, sheds light on this question.


Quantum dots (QD) are nanoscale crystals that can emit light at different wavelengths creating brilliant colors. Scientists can control the size of a QD in order to determine which color it emits. This array moves from blue emitting QD with radii of 2-3 nm up to red QD with radii of 5-6 nm. Learn more by watching episode 4 of Nanotechnology: Super Small Science.

Credit: NSF & NBC Learn


By exposing a glass plate placed inside a vacuum chamber to the correct amount of heat and carbon mixed gas, scientists can cause forests of carbon nanotubes to grow on its surface. These carbon nanotubes absorb light and can help reduce glare on screens.

Credit: NSF & NBC Learn

"Nanotechnology: Super Small Science" is a six-part series and shows viewers how atoms and molecules that are thousands of times smaller than the width of a human hair can be used as building blocks to create future technology. The series features a dozen world class American researchers, including quantum physicist and National Medal of Science winner Paul Alivisatos.

"Today we are learning to rearrange the basic atomic and molecular building blocks -- foundational technology for understanding nature and creating things that were not possible before," said Mihail Roco, senior adviser of science and engineering at NSF and a key architect of the National Nanotechnology Initiative (NNI). "These videos, produced while nanoscience is still in formation with so much potential, tell stories that will inspire younger generations and future results."

Narrated by NBC News and MSNBC anchor Kate Snow, "Nanotechnology: Super Small Science" will be available through NBC affiliate stations and can also be seen for free online at NBCLearn.com, NSF.gov and Science360.gov.

"We're proud to launch an original series that shows viewers how scientists and engineers manipulate material only billionths of a meter in size, and the powerful impact that can have on the world around them," said Soraya Gage, vice president and general manager of NBC Learn. "Through our partnership with the National Science Foundation, we're using our digital platform and journalistic expertise to explore how nanotechnology advances innovation in fields such as medicine, energy and electronics."

"For 15 years, more discoveries have come from Nanotechnology than any other field of science and engineering. Now its discoveries are penetrating all aspects of society -- new industries, medicine, agriculture and the management of natural resources," added Roco.

In the videos, viewers learn how scientists use nanotechnology to capture energy from the sun, increase the power of smaller microchips and computers, build structures that are lightweight and resilient and much more:

Nanotechnology: Harnessing the Nanoscale - Why is something only billionths of a meter in size so important? Dawn Bonnell at the University of Pennsylvania shows how the ability to control and manipulate material at this extremely small scale is having a big impact around the world in medicine, energy and electronics.

Nanotechnology: A Powerful Solution - Paul Alivisatos' team at the University of California, Berkeley, is working to develop a new type of solar cell using nano-sized crystals called quantum dots. Quantum dots are already helping to produce brighter, more vivid color in displays. The ability of solar cells to efficiently process energy in the form of light also makes them an ideal solution to our energy problems.

Nanotechnology: Nanoelectronics - You may have nanotechnology in your pocket and not even know it. Today's smartphones are much smaller than computers of the past and yet significantly more powerful, thanks to nanotechnology. Tom Theis with the Semiconductor Research Corporation and IBM, and Ana Claudia Arias at the University of California, Berkeley, explain how nanotechnology has already changed our lives and the exciting possibilities for the future.

Nanotechnology at the Surface - How could something only billionths of a meter thick defend against water, dirt, wear and even bacteria? Working at the nanoscale, scientists and engineers, like Jay Guo of the University of Michigan, are creating protective nanoscale coatings and layers. These surfaces have applications in energy, electronics, medicine and could even be used to make a plane invisible.

Nanotechnology: Nanoarchitech - Caltech's Julia Greer is proving that using big and heavy materials is not the only way to build strong, robust structures. Beginning at the nanoscale, her group is constructing materials that are more than 99 percent air yet strong and resilient. These new materials are breaking the rules by behaving in very unexpected ways.

Nanotechnology: Nano-Enabled Sensors and Nanoparticles - Some of the biggest advances in medical technology may soon come from devices built on the nanoscale. Donglei Fan with the University of Texas at Austin and Paula Hammond with Massachusetts Institute of Technology discuss how their use of nanotechnology may one day sense, diagnose and even treat cancer.

"We want to spread the excitement of the nano world -- especially to the younger generation -- for they will start to realize its extraordinary potential," said Roco.

Media Contact

Lisa-Joy Zgorski
lzgorski@nsf.gov
703-292-8311

 @NSF

http://www.nsf.gov 

Lisa-Joy Zgorski | EurekAlert!

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>