Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New ‘Molecular Movie’ Reveals Ultrafast Chemistry in Motion


X-ray Laser Measures Atomic-scale Details of How Ring-shaped Gas Molecule Breaks Open, Unravels

Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.

SLAC National Accelerator Laboratory

This illustration shows shape changes that occur in quadrillionths-of-a-second intervals in a ring-shaped molecule that was broken open by light. The molecular motion was measured using SLAC's Linac Coherent Light Source X-ray laser. The colored chart shows a theoretical model of molecular changes that syncs well with the actual results. The squares in the background represent panels in an LCLS X-ray detector.

Researchers working at the Department of Energy’s SLAC National Accelerator Laboratory compiled the full sequence of steps in this basic ring-opening reaction into computerized animations that provide a “molecular movie” of the structural changes.

Conducted at SLAC’s Linac Coherent Light Source, a DOE Office of Science User Facility, the pioneering study marks an important milestone in precisely tracking how gas-phase molecules transform during chemical reactions on the scale of femtoseconds. A femtosecond is a millionth of a billionth of a second.

“This fulfills a promise of LCLS: Before your eyes, a chemical reaction is occurring that has never been seen before in this way,” said Mike Minitti, a SLAC scientist who led the experiment in collaboration with Peter Weber at Brown University. The results are featured in the June 22 edition of Physical Review Letters.

“LCLS is a game-changer in giving us the ability to probe this and other reactions in record-fast timescales,” Minitti said, "down to the motion of individual atoms." The same method can be used to study more complex molecules and chemistry.

The free-floating molecules in a gas, when studied with the uniquely bright X-rays at LCLS, can provide a very clear view of structural changes because gas molecules are less likely to be tangled up with one another or otherwise obstructed, he added. “Until now, learning anything meaningful about such rapid molecular changes in a gas using other X-ray sources was very limited, at best.”

New Views of Chemistry in Action

The study focused on the gas form of 1,3-cyclohexadiene (CHD), a small, ring-shaped organic molecule derived from pine oil. Ring-shaped molecules play key roles in many biological and chemical processes that are driven by the formation and breaking of chemical bonds. The experiment tracked how the ringed molecule unfurls after a bond between two of its atoms is broken, transforming into a nearly linear molecule called hexatriene.

"There had been a long-standing question of how this molecule actually opens up," Minitti said. “The atoms can take different paths and directions. Tracking this ultimately shows how chemical reactions are truly progressing, and will likely lead to improvements in theories and models.”

The Making of a Molecular Movie

In the experiment, researchers excited CHD vapor with ultrafast ultraviolet laser pulses to begin the ring-opening reaction. Then they fired LCLS X-ray laser pulses at different time intervals to measure how the molecules changed their shape.

Researchers compiled and sorted over 100,000 strobe-like measurements of scattered X-rays. Then, they matched these measurements to computer simulations that show the most likely ways the molecule unravels in the first 200 quadrillionths of a second after it opens. The simulations, performed by team member Adam Kirrander at the University of Edinburgh, show the changing motion and position of its atoms.

Each interval in the animations represents 25 quadrillionths of a second ­-- about 1.3 trillion times faster than the typical 30-frames-per-second rate used to display TV shows.

“It is a remarkable achievement to watch molecular motions with such incredible time resolution,” Weber said.

A gas sample was considered ideal for this study because interference from any neighboring CHD molecules would be minimized, making it easier to identify and track the transformation of individual molecules. The LCLS X-ray pulses were like cue balls in a game of billiards, scattering off the electrons of the molecules and onto a position-sensitive detector that projected the locations of the atoms within the molecules.

A Successful Test Case for More Complex Studies

“This study can serve as a benchmark and springboard for larger molecules that can help us explore and understand even more complex and important chemistry,” Minitti said.

Additional contributors included scientists at Brown and Stanford universities in the U.S. and the University of Edinburgh in the U.K. The work was supported by the DOE Office of Basic Energy Sciences.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit 

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Contact Information
Andrew Gordon
External Communications Manager
Phone: 650-926-2282
Mobile: 510-325-9303

Andrew Gordon | newswise

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>