Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method provides researchers with efficient tool for tagging proteins

30.07.2014

Aarhus University researchers have developed an easier method to create DNA–protein conjugates. The method can potentially strengthen the work involved in diagnosing diseases.

DNA linked to proteins – including antibodies – provides a strong partnership that can be used in diagnostic techniques, nanotechnology and other disciplines. DNA–protein conjugates – which tag proteins with DNA – can be used for purposes such as the sensitive detection and visualisation of biological material. The method also provides easier access to handling proteins in nanotechnology, where the DNA acts as a handle on the protein.


With a new method, researchers use a piece of DNA engineered to bind to metal ions. Using this ‘control stick’, they direct another piece of DNA to a metal binding site on the protein. Illustration: Nature Chemistry

Controlling the conjugation of macromolecules such as DNA and proteins can be quite a challenge when scientists want to join them in particular ways and places. Researchers at Aarhus University have now developed a new and efficient method to tag proteins with DNA, making it much simpler to control the process than previously. The new method was developed at the Danish National Research Foundation’s Centre for DNA Nanotechnology (CDNA) in collaboration between researchers at Aarhus University’s Interdisciplinary Nanoscience Centre (iNANO), Department of Chemistry and Department of Molecular Biology and Genetics. The work is described in the highly prestigious scientific journal Nature Chemistry.

“Maintaining the protein’s function and activity often requires the attachment of only a single DNA strand to the protein. At the same time, it can be important to know where the DNA strand is attached to the protein. You can normally only achieve this if you are working with genetically engineered proteins. This is a time-consuming and technically challenging process,” explains PhD student Christian B. Rosen, CDNA, Aarhus University – one of the researchers behind the new method.

The new method makes it possible to direct the tagging of proteins with DNA to a particular site on the protein, without genetically modifying the protein beforehand. In other words, it is possible to tag natural proteins, including antibodies.

The researchers use a piece of DNA that is engineered to bind to metal ions. Using this ‘control stick’, they direct another piece of DNA to a metal binding site on the protein, where it reacts. A considerable number of proteins bind metal ions, which makes them suitable for this method. A significant point in using this method is that the tagged proteins retain their functionality after being bound to DNA.

The researchers are applying for a patent for the new method, which has potential in a number of areas.

“Of greatest importance is the fact that we can use our technique for tagging antibodies. Antibodies that are chemically bound (conjugated) to chemotherapeutics represent an entirely new class of medicine in which the antibody part is used to recognise specific tissue and the chemotherapeutic part is used to kill the cell. When you tag antibodies, it’s important that you keep the recognition element of the antibody intact. With our method, we strike the constant part of the antibody and not the variable part, which contains its recognition element. Our technique is therefore general for a major class of proteins,” explains Anne Louise Bank Kodal, CDNA, another author of the article.

The researchers are working on further developing the method so they can attach chemotherapeutics to antibodies and not just DNA.

Read the article in Nature Chemistry.

For more information, please contact

PhD student Christian B. Rosen
CDNA at iNANO and Department of Chemistry
crosen@chem.au.dk

PhD student Anne Louise Bank Kodal
CDNA at iNANO and Department of Chemistry
alkodal@chem.au.dk

Postdoctoral Fellow Thomas Tørring
CDNA at iNANO (currently at Yale University, USA)
thomas.torring@yale.edu

Professor and Director Kurt Gothelf
CDNA at iNANO and Department of Chemistry
kvg@chem.au.dk

Christian B. Rosen | Eurek Alert!
Further information:
http://scitech.au.dk/en/current-affairs/news/show/artikel/ny-metode-giver-forskere-et-effektivt-vaerktoej-til-maerkning-af-proteiner/

Further reports about: Aarhus Antibodies Controlling DNA Molecular Nanoscience Nanotechnology Nature function ions method protein proteins

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>