Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism activates the immune system against tumour cells

17.06.2016

Only when cancer cells escape the surveillance by the immune system can a tumour grow. It is currently one challenge in cancer research to activate the body's natural defences to eliminate tumour cells. Veronika Sexl, head of the Institute of Pharmacology and Toxicology at the University of Veterinary Medicine Vienna, has now discovered with her team a surprising new function for the signalling molecule STAT1 in immune cells. This previously unknown feature could pave the way to a new therapeutic approach to immunological cancer therapy. The study results were published in the journal ‘OncoImmunology’.

The body's defences detect and eliminate not only pathogens but also tumour cells. Natural killer cells (NK-Cells) are specifically activated by chemical messengers, the Cytokines, to seek and destroy tumour cells. Veronika Sexl and her team from the Institute of Pharmacology and Toxicology at the Vetmeduni Vienna study the fundamentals of tumour surveillance by the immune system in animal models.


The new function of STAT1 can be a decisive factor for immune therapy of cancer says Veronika Sexl.

Michael Bernkopf/Vetmeduni Vienna

Cytokines trigger a signal cascade in NK cells recruiting them to tumour defence. An important player in this signalling process is the transcription factor STAT1. This molecule enters the cell nucleus to turn on genes required for the activation of NK cells. Until now it was assumed that NK cells are triggered by STAT1 mediated gene activation. However, Sexl and her team have now discovered that not gene transcription, but a previously unknown mechanism of STAT1 activates NK cells.

Genetics revealed unknown function of STAT1

The importance of the signalling molecule STAT1 for NK cells is revealed when it is absent. Without STAT1 tumour cells are inefficiently eliminated. The researchers wondered however, whether STAT1’s nuclear activity as transcriptional activator is essential for its function. "The activation of other genes is to date the only known and accepted function of STAT1. In order to show the actual role in the activation of NK cells we genetically removed this function, "said lead author Eva Putz.

To do so Sexl teamed up with researchers from the US and the University of Vienna, and generated mice with a modified STAT1. This altered STAT1 molecule is incapable of turning on genes by virtue of a single change in the protein sequence. Despite this modification, the NK cells were still surprisingly effective in eliminating tumour cells. "The activation of NK cells therefore depends on a previously unidentified STAT1 function, since the molecule without the known activity continues to function," explains Sexl.

The Immunological synapse harbours STAT1 for activation of NK cells

Using various experiments, Sexl and her co-workers could prove that STAT1 is capable of not only activating genes but also working directly with key players in the signalling process outside the nucleus. "A transcription factor performs its job in the cell nucleus, where the DNA is. But we observed STAT1 in activated NK cells not in the nucleus, but in regions close to the cell membrane, where NK cells and tumour cells meet" says Putz.

Apparently, STAT1 does not need to enter the nucleus in order to activate NK cells. Instead, STAT1 appears to be directly involved in the signalling of the NK cells, which upon activation eliminate the tumour cells. This represents a new function of STAT1, entirely independent of gene transcription.

"It will be an exciting challenge to explore this previously unknown function of STAT1 in tumour surveillance. Improving the mobilisation of NK cells in cancer patients is an intense area of research to make anti-tumour therapy more effective", concludes Sexl.

Service:
The article "Novel non-canonical role of STAT1 in natural killer cell cytotoxicity" by Eva Maria Putz, Andrea Majoros, Dagmar Gotthardt, Michaela Prchal-Murphy, Eva Maria Zebedin-Brandl, Daniela Alexandra Fux, Andreas Schlattl, Robert D. Schreiber, Sebastian Carotta, Mathias Müller, Christopher Gerner, Thomas Decker and Veronika Sexl published in the Journal OncoImmunology. doi:10.1080/2162402X.2016.1186314
http://www.tandfonline.com/doi/abs/10.1080/2162402X.2016.1186314?journalCode=kon...

About the University of Veterinary Medicine Vienna
The University of Veterinary Medicine Vienna (Vetmeduni Vienna) is one of the leading veterinary, academic and research facilities in Europe. Its main focus is on the research fields of animal health, food safety, animal husbandry and animal welfare as well as biomedical fundamentals. The Vetmeduni Vienna has 1,300 employees and is currently training 2,300 students. The campus in Floridsdorf, Vienna has five university hospitals and numerous research institutions at its disposal. Two research institutes at Wilhelminenberg, Vienna and a Teaching and Research in Lower Austria also belong to the Vetmeduni Vienna. http://www.vetmeduni.ac.at

Scientific contact:
Veronika Sexl
Institute of Pharmacology and Toxikology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2910
veronika.sexl@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>