Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New mechanism activates the immune system against tumour cells


Only when cancer cells escape the surveillance by the immune system can a tumour grow. It is currently one challenge in cancer research to activate the body's natural defences to eliminate tumour cells. Veronika Sexl, head of the Institute of Pharmacology and Toxicology at the University of Veterinary Medicine Vienna, has now discovered with her team a surprising new function for the signalling molecule STAT1 in immune cells. This previously unknown feature could pave the way to a new therapeutic approach to immunological cancer therapy. The study results were published in the journal ‘OncoImmunology’.

The body's defences detect and eliminate not only pathogens but also tumour cells. Natural killer cells (NK-Cells) are specifically activated by chemical messengers, the Cytokines, to seek and destroy tumour cells. Veronika Sexl and her team from the Institute of Pharmacology and Toxicology at the Vetmeduni Vienna study the fundamentals of tumour surveillance by the immune system in animal models.

The new function of STAT1 can be a decisive factor for immune therapy of cancer says Veronika Sexl.

Michael Bernkopf/Vetmeduni Vienna

Cytokines trigger a signal cascade in NK cells recruiting them to tumour defence. An important player in this signalling process is the transcription factor STAT1. This molecule enters the cell nucleus to turn on genes required for the activation of NK cells. Until now it was assumed that NK cells are triggered by STAT1 mediated gene activation. However, Sexl and her team have now discovered that not gene transcription, but a previously unknown mechanism of STAT1 activates NK cells.

Genetics revealed unknown function of STAT1

The importance of the signalling molecule STAT1 for NK cells is revealed when it is absent. Without STAT1 tumour cells are inefficiently eliminated. The researchers wondered however, whether STAT1’s nuclear activity as transcriptional activator is essential for its function. "The activation of other genes is to date the only known and accepted function of STAT1. In order to show the actual role in the activation of NK cells we genetically removed this function, "said lead author Eva Putz.

To do so Sexl teamed up with researchers from the US and the University of Vienna, and generated mice with a modified STAT1. This altered STAT1 molecule is incapable of turning on genes by virtue of a single change in the protein sequence. Despite this modification, the NK cells were still surprisingly effective in eliminating tumour cells. "The activation of NK cells therefore depends on a previously unidentified STAT1 function, since the molecule without the known activity continues to function," explains Sexl.

The Immunological synapse harbours STAT1 for activation of NK cells

Using various experiments, Sexl and her co-workers could prove that STAT1 is capable of not only activating genes but also working directly with key players in the signalling process outside the nucleus. "A transcription factor performs its job in the cell nucleus, where the DNA is. But we observed STAT1 in activated NK cells not in the nucleus, but in regions close to the cell membrane, where NK cells and tumour cells meet" says Putz.

Apparently, STAT1 does not need to enter the nucleus in order to activate NK cells. Instead, STAT1 appears to be directly involved in the signalling of the NK cells, which upon activation eliminate the tumour cells. This represents a new function of STAT1, entirely independent of gene transcription.

"It will be an exciting challenge to explore this previously unknown function of STAT1 in tumour surveillance. Improving the mobilisation of NK cells in cancer patients is an intense area of research to make anti-tumour therapy more effective", concludes Sexl.

The article "Novel non-canonical role of STAT1 in natural killer cell cytotoxicity" by Eva Maria Putz, Andrea Majoros, Dagmar Gotthardt, Michaela Prchal-Murphy, Eva Maria Zebedin-Brandl, Daniela Alexandra Fux, Andreas Schlattl, Robert D. Schreiber, Sebastian Carotta, Mathias Müller, Christopher Gerner, Thomas Decker and Veronika Sexl published in the Journal OncoImmunology. doi:10.1080/2162402X.2016.1186314

About the University of Veterinary Medicine Vienna
The University of Veterinary Medicine Vienna (Vetmeduni Vienna) is one of the leading veterinary, academic and research facilities in Europe. Its main focus is on the research fields of animal health, food safety, animal husbandry and animal welfare as well as biomedical fundamentals. The Vetmeduni Vienna has 1,300 employees and is currently training 2,300 students. The campus in Floridsdorf, Vienna has five university hospitals and numerous research institutions at its disposal. Two research institutes at Wilhelminenberg, Vienna and a Teaching and Research in Lower Austria also belong to the Vetmeduni Vienna.

Scientific contact:
Veronika Sexl
Institute of Pharmacology and Toxikology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2910

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165

Weitere Informationen:

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>