Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New measures taken at UNIGE call theories about endocytosis into question

19.02.2015

Where does the force that draws the membrane of the eukaryotic cell inwards come from?

Cellular biology still harbors mysteries. Notably, there is no unequivocal explanation behind endocytosis, the biological process that allows exchanges between a cell and its environment. Two hypotheses prevail for explaining how the wall caves in and forms transport vesicles: either the initial impetus is due to a scaffold-like structure which the soccer ball-shaped clathrin proteins build between themselves, or clathrin's role is minor, and it is other, «adaptor» proteins who exert pressure on the cell wall until endocytosis begins. One recently completed study by the Faculty of Science at the University of Geneva (UNIGE) reconciles the two theories, suggesting a balance between forces present: clathrin proteins are only slightly more influential than the others, and it is a clever combination of physical mechanisms that contributes to creating favorable conditions for the deformation of the membrane. These conclusions captured the interest of the editors of Nature Communications, who just published them.


This is an illustration of a protein of clathrine, with its caracteristic form.

Credit: University of Geneva

In vitro procedures by researchers in UNIGE's Department of Biochemistry shed new light on the phenomenon of endocytosis, the biological cycle that takes place at the membrane level, and ends with the formation of the transport compartments necessary for external exchanges.

During endocytosis, the cell membrane of eukaryotic organisms becomes deformed, puckering and caving in, creating vesicles for transporting elements - like ions, nutrients, and signals - that are necessary for life. This compartment is deployed from the membrane towards the inside of the cell; its creation implies the use of a lot of energy, and a significant physical force. Two hypotheses provide different explanations for its origins.

A suction cup shaped like a soccer ball, or strong «adaptors» that act as wedges?

In order to explain the genesis of the phenomenon, the scientific community that specializes in the study of endocytosis offers two dominant theories: the first, in which clathrins, proteins shaped like soccer balls that build lego-like structures with each other, act as a suction cup that can suck in the cellular membrane and make it curved. The other theory gives the predominant role to other «adaptor» proteins, which work with clathrins, and deform the membrane in the same way that a wedge is used to split wood.

In Aurélien Roux's laboratory, Saleem Mohammed's delicate processes turn these perspectives upside down by reconciling the two hypotheses: it is not that the energy deployed by clathrin proteins to build scaffold-like structures between each other exceeds what is needed to deform the membrane. Nor that the adaptors broach the membrane by themselves.

Forces balance to open the membrane

Although clathrin remains the main agent behind endocytosis, it doesn't act as a steamroller. Its influence is more subtle than the suction cup hypothesis posits. This assembly protein's energy will join that of the adaptors, which are binding proteins, to make the cellular membrane curve inwards. The membrane has several special characteristics of its own, making it an endlessly fascinating field of research. Its plasticity and elasticity resemble that of human skin, while it has the kind of fluidity and malleability of a soap bubble. Impermeable and self-healing, the cellular membrane guarantees the integrity of the eukaryotic cell.

Physics could therefore be a great help when studying the biology of such a complex ensemble of lipids, sugars, and proteins. This is the multi-disciplinary approach favored by Aurélien Roux, who states that «Cellular biology is undergoing a revolution in terms of methodology: the quantitative aspect plays a significant role, and mathematics and physics help bring about new models for understanding the subtleties of life.»

Media Contact

Aurélien Roux
aurelien.roux@unige.ch
41-789-215-455

 @UNIGEnews

http://www.unige.ch 

Aurélien Roux | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>