Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New measures taken at UNIGE call theories about endocytosis into question

19.02.2015

Where does the force that draws the membrane of the eukaryotic cell inwards come from?

Cellular biology still harbors mysteries. Notably, there is no unequivocal explanation behind endocytosis, the biological process that allows exchanges between a cell and its environment. Two hypotheses prevail for explaining how the wall caves in and forms transport vesicles: either the initial impetus is due to a scaffold-like structure which the soccer ball-shaped clathrin proteins build between themselves, or clathrin's role is minor, and it is other, «adaptor» proteins who exert pressure on the cell wall until endocytosis begins. One recently completed study by the Faculty of Science at the University of Geneva (UNIGE) reconciles the two theories, suggesting a balance between forces present: clathrin proteins are only slightly more influential than the others, and it is a clever combination of physical mechanisms that contributes to creating favorable conditions for the deformation of the membrane. These conclusions captured the interest of the editors of Nature Communications, who just published them.


This is an illustration of a protein of clathrine, with its caracteristic form.

Credit: University of Geneva

In vitro procedures by researchers in UNIGE's Department of Biochemistry shed new light on the phenomenon of endocytosis, the biological cycle that takes place at the membrane level, and ends with the formation of the transport compartments necessary for external exchanges.

During endocytosis, the cell membrane of eukaryotic organisms becomes deformed, puckering and caving in, creating vesicles for transporting elements - like ions, nutrients, and signals - that are necessary for life. This compartment is deployed from the membrane towards the inside of the cell; its creation implies the use of a lot of energy, and a significant physical force. Two hypotheses provide different explanations for its origins.

A suction cup shaped like a soccer ball, or strong «adaptors» that act as wedges?

In order to explain the genesis of the phenomenon, the scientific community that specializes in the study of endocytosis offers two dominant theories: the first, in which clathrins, proteins shaped like soccer balls that build lego-like structures with each other, act as a suction cup that can suck in the cellular membrane and make it curved. The other theory gives the predominant role to other «adaptor» proteins, which work with clathrins, and deform the membrane in the same way that a wedge is used to split wood.

In Aurélien Roux's laboratory, Saleem Mohammed's delicate processes turn these perspectives upside down by reconciling the two hypotheses: it is not that the energy deployed by clathrin proteins to build scaffold-like structures between each other exceeds what is needed to deform the membrane. Nor that the adaptors broach the membrane by themselves.

Forces balance to open the membrane

Although clathrin remains the main agent behind endocytosis, it doesn't act as a steamroller. Its influence is more subtle than the suction cup hypothesis posits. This assembly protein's energy will join that of the adaptors, which are binding proteins, to make the cellular membrane curve inwards. The membrane has several special characteristics of its own, making it an endlessly fascinating field of research. Its plasticity and elasticity resemble that of human skin, while it has the kind of fluidity and malleability of a soap bubble. Impermeable and self-healing, the cellular membrane guarantees the integrity of the eukaryotic cell.

Physics could therefore be a great help when studying the biology of such a complex ensemble of lipids, sugars, and proteins. This is the multi-disciplinary approach favored by Aurélien Roux, who states that «Cellular biology is undergoing a revolution in terms of methodology: the quantitative aspect plays a significant role, and mathematics and physics help bring about new models for understanding the subtleties of life.»

Media Contact

Aurélien Roux
aurelien.roux@unige.ch
41-789-215-455

 @UNIGEnews

http://www.unige.ch 

Aurélien Roux | EurekAlert!

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>