Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New measures taken at UNIGE call theories about endocytosis into question

19.02.2015

Where does the force that draws the membrane of the eukaryotic cell inwards come from?

Cellular biology still harbors mysteries. Notably, there is no unequivocal explanation behind endocytosis, the biological process that allows exchanges between a cell and its environment. Two hypotheses prevail for explaining how the wall caves in and forms transport vesicles: either the initial impetus is due to a scaffold-like structure which the soccer ball-shaped clathrin proteins build between themselves, or clathrin's role is minor, and it is other, «adaptor» proteins who exert pressure on the cell wall until endocytosis begins. One recently completed study by the Faculty of Science at the University of Geneva (UNIGE) reconciles the two theories, suggesting a balance between forces present: clathrin proteins are only slightly more influential than the others, and it is a clever combination of physical mechanisms that contributes to creating favorable conditions for the deformation of the membrane. These conclusions captured the interest of the editors of Nature Communications, who just published them.


This is an illustration of a protein of clathrine, with its caracteristic form.

Credit: University of Geneva

In vitro procedures by researchers in UNIGE's Department of Biochemistry shed new light on the phenomenon of endocytosis, the biological cycle that takes place at the membrane level, and ends with the formation of the transport compartments necessary for external exchanges.

During endocytosis, the cell membrane of eukaryotic organisms becomes deformed, puckering and caving in, creating vesicles for transporting elements - like ions, nutrients, and signals - that are necessary for life. This compartment is deployed from the membrane towards the inside of the cell; its creation implies the use of a lot of energy, and a significant physical force. Two hypotheses provide different explanations for its origins.

A suction cup shaped like a soccer ball, or strong «adaptors» that act as wedges?

In order to explain the genesis of the phenomenon, the scientific community that specializes in the study of endocytosis offers two dominant theories: the first, in which clathrins, proteins shaped like soccer balls that build lego-like structures with each other, act as a suction cup that can suck in the cellular membrane and make it curved. The other theory gives the predominant role to other «adaptor» proteins, which work with clathrins, and deform the membrane in the same way that a wedge is used to split wood.

In Aurélien Roux's laboratory, Saleem Mohammed's delicate processes turn these perspectives upside down by reconciling the two hypotheses: it is not that the energy deployed by clathrin proteins to build scaffold-like structures between each other exceeds what is needed to deform the membrane. Nor that the adaptors broach the membrane by themselves.

Forces balance to open the membrane

Although clathrin remains the main agent behind endocytosis, it doesn't act as a steamroller. Its influence is more subtle than the suction cup hypothesis posits. This assembly protein's energy will join that of the adaptors, which are binding proteins, to make the cellular membrane curve inwards. The membrane has several special characteristics of its own, making it an endlessly fascinating field of research. Its plasticity and elasticity resemble that of human skin, while it has the kind of fluidity and malleability of a soap bubble. Impermeable and self-healing, the cellular membrane guarantees the integrity of the eukaryotic cell.

Physics could therefore be a great help when studying the biology of such a complex ensemble of lipids, sugars, and proteins. This is the multi-disciplinary approach favored by Aurélien Roux, who states that «Cellular biology is undergoing a revolution in terms of methodology: the quantitative aspect plays a significant role, and mathematics and physics help bring about new models for understanding the subtleties of life.»

Media Contact

Aurélien Roux
aurelien.roux@unige.ch
41-789-215-455

 @UNIGEnews

http://www.unige.ch 

Aurélien Roux | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>