Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge about the brain's effective bouncer

16.07.2014

Research from the University of Copenhagen is shedding new light on the brain's complicated barrier tissue.

The blood-brain barrier is an effective barrier which protects the brain, but which at the same time makes it difficult to treat diseases such as Alzheimer's. In an in vitro blood-brain barrier, researchers can recreate the brain's transport processes for the benefit of the development of new pharmaceuticals for the brain. The new research findings are published in the AAPS Journal.


The blood-brain barrier is an effective barrier which protects the brain, but which at the same time makes it difficult to treat diseases such as Alzheimer's.

Ninety-five per cent of all tested pharmacological agents for treating brain disorders fail, because they cannot cross the blood-brain barrier. It is therefore important to find a possible method for transporting drugs past the brain's efficient outpost and fervent protector.

Researchers at the Department of Pharmacy at the University of Copenhagen have recreated the complex blood-brain barrier in a laboratory model, which is based on cells from animals. In a new study, the researchers have studied the obstreperous bouncer proteins in the barrier tissue. The proteins protect the brain, but also prevent the treatment of brain diseases:

"The blood-brain barrier is chemically tight because the cells contain transporter proteins which make sure that substances entering the cells are thrown straight back out into the bloodstream again. We have shown that the barrier which we have created in the laboratory contains the same bouncer proteins – and that they behave in the same way as in a 'real' brain.

This is important, because the model can be used to test drive the difficult way into the brain. Complex phenomena – which we have so far only been able to study in live animals –can now be investigated in simple laboratory experiments using cultivated cells," says postdoc Hans Christian Cederberg Helms from the Department of Pharmacy.

The research team has shown that the transporter proteins P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 1 are active in the artificially created barrier tissue. The proteins pump pharmacological agents from the 'brain side' to the 'blood side' in the same way as in the human blood-brain barrier.

Read the scientific article in the AAPS journal

Collaboration finds a way

The new findings have resulted from collaboration with industrial scientists from the pharmaceutical company H. Lundbeck A/S. "It is important to the treatment of brain diseases such as Alzheimer's that we find a way of circumventing the brain's effective defence. The university and industry must work together to overcome the fundamental challenges inherent in developing pharmaceuticals for the future," says Lassina Badolo, Principal Scientist with H. Lundbeck A/S and an expert on the absorption of medicines in the body.

Associate Professor Birger Brodin adds: "We have shown that the models have the same bouncer proteins as the ones found in the intact barrier. We are now in the process of studying the proteins in the blood-brain barrier that accept pharmacological agents instead of throwing them out. If we can combine a beneficial substance which the brain needs with a so-called 'absorber protein', we will in the long term be able to smuggle pharmacological agents across the blood-brain barrier."

Birger Brodin heads the Drug Transporters in ADME research group which is responsible for the in vitro blood-brain barrier.

Contact:

Associate Professor
Birger Brodin
Cell: +45 22 48 03 55

Birger Brodin | Eurek Alert!

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>