Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge about the brain's effective bouncer

16.07.2014

Research from the University of Copenhagen is shedding new light on the brain's complicated barrier tissue.

The blood-brain barrier is an effective barrier which protects the brain, but which at the same time makes it difficult to treat diseases such as Alzheimer's. In an in vitro blood-brain barrier, researchers can recreate the brain's transport processes for the benefit of the development of new pharmaceuticals for the brain. The new research findings are published in the AAPS Journal.


The blood-brain barrier is an effective barrier which protects the brain, but which at the same time makes it difficult to treat diseases such as Alzheimer's.

Ninety-five per cent of all tested pharmacological agents for treating brain disorders fail, because they cannot cross the blood-brain barrier. It is therefore important to find a possible method for transporting drugs past the brain's efficient outpost and fervent protector.

Researchers at the Department of Pharmacy at the University of Copenhagen have recreated the complex blood-brain barrier in a laboratory model, which is based on cells from animals. In a new study, the researchers have studied the obstreperous bouncer proteins in the barrier tissue. The proteins protect the brain, but also prevent the treatment of brain diseases:

"The blood-brain barrier is chemically tight because the cells contain transporter proteins which make sure that substances entering the cells are thrown straight back out into the bloodstream again. We have shown that the barrier which we have created in the laboratory contains the same bouncer proteins – and that they behave in the same way as in a 'real' brain.

This is important, because the model can be used to test drive the difficult way into the brain. Complex phenomena – which we have so far only been able to study in live animals –can now be investigated in simple laboratory experiments using cultivated cells," says postdoc Hans Christian Cederberg Helms from the Department of Pharmacy.

The research team has shown that the transporter proteins P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 1 are active in the artificially created barrier tissue. The proteins pump pharmacological agents from the 'brain side' to the 'blood side' in the same way as in the human blood-brain barrier.

Read the scientific article in the AAPS journal

Collaboration finds a way

The new findings have resulted from collaboration with industrial scientists from the pharmaceutical company H. Lundbeck A/S. "It is important to the treatment of brain diseases such as Alzheimer's that we find a way of circumventing the brain's effective defence. The university and industry must work together to overcome the fundamental challenges inherent in developing pharmaceuticals for the future," says Lassina Badolo, Principal Scientist with H. Lundbeck A/S and an expert on the absorption of medicines in the body.

Associate Professor Birger Brodin adds: "We have shown that the models have the same bouncer proteins as the ones found in the intact barrier. We are now in the process of studying the proteins in the blood-brain barrier that accept pharmacological agents instead of throwing them out. If we can combine a beneficial substance which the brain needs with a so-called 'absorber protein', we will in the long term be able to smuggle pharmacological agents across the blood-brain barrier."

Birger Brodin heads the Drug Transporters in ADME research group which is responsible for the in vitro blood-brain barrier.

Contact:

Associate Professor
Birger Brodin
Cell: +45 22 48 03 55

Birger Brodin | Eurek Alert!

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>