Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the survival and transmission strategy of malaria parasites

14.08.2014

HP1 proteins are found in most eukaryotic organisms and are important regulators of gene silencing. In short, HP1 induces heritable condensation of chromosomal regions. As a result genes located within these regions are not expressed. Importantly, since this conformation is reversible HP1-controlled genes can become activated without requiring changes in the underlying DNA sequence.

The team led by Till Voss at the Swiss Tropical and Public Health Institute in collaboration with colleagues from the Nanyang Technological University in Singapore engineered a mutant parasite in which HP1 expression can be shut down at the push of a button. The researchers observed that in HP1-depleted parasites all of the 60 so-called var genes became highly active.

Each var gene encodes a distinct variant of the virulence factor PfEMP1, which is displayed on the surface of the parasite-infected red blood cell. PfEMP1 is a major target of the immune system in infected humans. Individual parasites normally express only one of the 60 different var/PfEMP1 proteins, while keeping all other members silenced.

By switching to another var/PfEMP1 variant the parasite is able to escape existing immune responses raised against previous variants. The new study shows that HP1 protects the PfEMP1 antigenic repertoire from being exposed to the immune system at once.

... more about:
»HP1 »Health »Malaria »PfEMP1 »Plasmodium »malaria »parasite »parasites

The new study shows that HP1 protects the PfEMP1 antigenic repertoire from being exposed to the immune system at once. "This finding is a major step forward in understanding the complex mechanisms responsible for antigenic variation," says Till Voss from the Swiss Tropical and Public Health Institute in Basel. "Furthermore, the tools generated in our study may be relevant for future research on malaria vaccines and immunity."

Lack of HP1 triggers production of malaria transmission stages

Importantly, the study also reveals that parasites lacking HP1 fail to copy their genomes and are hence unable to proliferate. "Initially, we thought all parasites in our culture dish were dead," says Till Voss.

However, it turned out that over 50% of these parasites were fully viable and differentiated into gametocytes, the sexual form of the malaria parasite. Gametocytes are the only form of the parasite capable of infecting a mosquito and therefore a prerequisite to transmit malaria between humans. "Such a high sexual conversion rate is unprecedented. Usually only around 1% of parasites undergo this switch," the researcher explains.

Further experiments show that a master transcription factor triggering sexual differentiation (termed AP2-G) is expressed at much higher levels in parasites lacking HP1. Under normal conditions, HP1 silences the expression of AP2-G and thus prevents sexual conversion in most parasites.

"The switch from parasite proliferation to gametocyte differentiation is controlled epigenetically by a HP1-dependent mechanism," says Till Voss. "This is really exciting. With this knowledge in hand, and with the identification of another epigenetic regulator involved in the same process (published in the same issue of Cell Host & Microbe), we are now able to specifically track the sexual conversion pathway in molecular detail." This may pave the route for the development of new drugs preventing sexual conversion and consequently malaria transmission.

###

The study was financed by the Swiss National Science Foundation, the Singaporean National Medical Research Council, the OPO Foundation, the Rudolf Geigy Foundation and the Boehringer Ingelheim Fonds.

Background: Malaria infection cycle

Malaria is a devastating infectious disease caused by unicellular parasites of the genus Plasmodium. Over 1 billion people worldwide live at high risk of contracting malaria and each year the disease causes more than 200 million clinical cases and 700'000 deaths, mostly among young African children. Plasmodium falciparum, one of five species known to elicit malaria in humans, is responsible for the vast majority of severe and fatal malaria outcomes.

Plasmodium parasites invade red blood cells, undergo intracellular replication, destroy their host cell and release up to 32 daughter parasites ready to infect new red blood cells. Repeated rounds of this vicious cycle lead to a massive expansion of the parasite population in the blood, which is responsible for all malaria-related morbidity and mortality. During each replication cycle a small number of parasites cease to proliferate and differentiate into sexual precursor cells called gametocytes. Only this form is able to infect the mosquito and therefore to transmit malaria to other humans.

Study

Heterochromatin Protein 1 Secures Survival and Transmission of Malaria Parasites. Nicolas M. B. Brancucci, Nicole L. Bertschi, Lei Zhu, Igor Niederwieser, Wai Hoe Chin, Rahel Wampfler, Céline Freymond, Matthias Rottmann, Ingrid Felger, Zbynek Bozdech, and Till S. Voss. Cell Host & Microbe 16, 165-176. 2014

Contact

Prof. Till Voss, Swiss Tropical and Public Health Institute till.voss@unibas.ch, Tel +41 61 284 81 61

Dr. Christian Heuss, Communication, Swiss Tropical and Public Health Institute, christian.heuss@unibas.ch. Tel +41 61 284 86 83

About the Swiss Tropical and Public Health Institute (Swiss TPH)

The Swiss Tropical and Public Health Institute (Swiss TPH) is one of Switzerland's leading public and global health institutions. Associated with the University of Basel, the institute combines research, teaching and service provisions at local, national and international level. Swiss TPH is a public sector organisation and receives around 17% of its budget of approximately 80 million francs from core contributions from the cantons of Basel-Stadt and Basel-Landschaft (10%) and from the federal government (8%). The remainder (82%) is acquired by competing for funds. The Institute has more than 600 employees working in 20 countries.

Christian Heuss | Eurek Alert!
Further information:
http://www.unibas.ch

Further reports about: HP1 Health Malaria PfEMP1 Plasmodium malaria parasite parasites

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>