Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the survival and transmission strategy of malaria parasites

14.08.2014

HP1 proteins are found in most eukaryotic organisms and are important regulators of gene silencing. In short, HP1 induces heritable condensation of chromosomal regions. As a result genes located within these regions are not expressed. Importantly, since this conformation is reversible HP1-controlled genes can become activated without requiring changes in the underlying DNA sequence.

The team led by Till Voss at the Swiss Tropical and Public Health Institute in collaboration with colleagues from the Nanyang Technological University in Singapore engineered a mutant parasite in which HP1 expression can be shut down at the push of a button. The researchers observed that in HP1-depleted parasites all of the 60 so-called var genes became highly active.

Each var gene encodes a distinct variant of the virulence factor PfEMP1, which is displayed on the surface of the parasite-infected red blood cell. PfEMP1 is a major target of the immune system in infected humans. Individual parasites normally express only one of the 60 different var/PfEMP1 proteins, while keeping all other members silenced.

By switching to another var/PfEMP1 variant the parasite is able to escape existing immune responses raised against previous variants. The new study shows that HP1 protects the PfEMP1 antigenic repertoire from being exposed to the immune system at once.

... more about:
»HP1 »Health »Malaria »PfEMP1 »Plasmodium »malaria »parasite »parasites

The new study shows that HP1 protects the PfEMP1 antigenic repertoire from being exposed to the immune system at once. "This finding is a major step forward in understanding the complex mechanisms responsible for antigenic variation," says Till Voss from the Swiss Tropical and Public Health Institute in Basel. "Furthermore, the tools generated in our study may be relevant for future research on malaria vaccines and immunity."

Lack of HP1 triggers production of malaria transmission stages

Importantly, the study also reveals that parasites lacking HP1 fail to copy their genomes and are hence unable to proliferate. "Initially, we thought all parasites in our culture dish were dead," says Till Voss.

However, it turned out that over 50% of these parasites were fully viable and differentiated into gametocytes, the sexual form of the malaria parasite. Gametocytes are the only form of the parasite capable of infecting a mosquito and therefore a prerequisite to transmit malaria between humans. "Such a high sexual conversion rate is unprecedented. Usually only around 1% of parasites undergo this switch," the researcher explains.

Further experiments show that a master transcription factor triggering sexual differentiation (termed AP2-G) is expressed at much higher levels in parasites lacking HP1. Under normal conditions, HP1 silences the expression of AP2-G and thus prevents sexual conversion in most parasites.

"The switch from parasite proliferation to gametocyte differentiation is controlled epigenetically by a HP1-dependent mechanism," says Till Voss. "This is really exciting. With this knowledge in hand, and with the identification of another epigenetic regulator involved in the same process (published in the same issue of Cell Host & Microbe), we are now able to specifically track the sexual conversion pathway in molecular detail." This may pave the route for the development of new drugs preventing sexual conversion and consequently malaria transmission.

###

The study was financed by the Swiss National Science Foundation, the Singaporean National Medical Research Council, the OPO Foundation, the Rudolf Geigy Foundation and the Boehringer Ingelheim Fonds.

Background: Malaria infection cycle

Malaria is a devastating infectious disease caused by unicellular parasites of the genus Plasmodium. Over 1 billion people worldwide live at high risk of contracting malaria and each year the disease causes more than 200 million clinical cases and 700'000 deaths, mostly among young African children. Plasmodium falciparum, one of five species known to elicit malaria in humans, is responsible for the vast majority of severe and fatal malaria outcomes.

Plasmodium parasites invade red blood cells, undergo intracellular replication, destroy their host cell and release up to 32 daughter parasites ready to infect new red blood cells. Repeated rounds of this vicious cycle lead to a massive expansion of the parasite population in the blood, which is responsible for all malaria-related morbidity and mortality. During each replication cycle a small number of parasites cease to proliferate and differentiate into sexual precursor cells called gametocytes. Only this form is able to infect the mosquito and therefore to transmit malaria to other humans.

Study

Heterochromatin Protein 1 Secures Survival and Transmission of Malaria Parasites. Nicolas M. B. Brancucci, Nicole L. Bertschi, Lei Zhu, Igor Niederwieser, Wai Hoe Chin, Rahel Wampfler, Céline Freymond, Matthias Rottmann, Ingrid Felger, Zbynek Bozdech, and Till S. Voss. Cell Host & Microbe 16, 165-176. 2014

Contact

Prof. Till Voss, Swiss Tropical and Public Health Institute till.voss@unibas.ch, Tel +41 61 284 81 61

Dr. Christian Heuss, Communication, Swiss Tropical and Public Health Institute, christian.heuss@unibas.ch. Tel +41 61 284 86 83

About the Swiss Tropical and Public Health Institute (Swiss TPH)

The Swiss Tropical and Public Health Institute (Swiss TPH) is one of Switzerland's leading public and global health institutions. Associated with the University of Basel, the institute combines research, teaching and service provisions at local, national and international level. Swiss TPH is a public sector organisation and receives around 17% of its budget of approximately 80 million francs from core contributions from the cantons of Basel-Stadt and Basel-Landschaft (10%) and from the federal government (8%). The remainder (82%) is acquired by competing for funds. The Institute has more than 600 employees working in 20 countries.

Christian Heuss | Eurek Alert!
Further information:
http://www.unibas.ch

Further reports about: HP1 Health Malaria PfEMP1 Plasmodium malaria parasite parasites

More articles from Life Sciences:

nachricht Subcutaneous Administration of Multispecific Antibody Makes Tumor Treatment Faster & More Tolerable
01.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Why human egg cells don't age well
01.07.2015 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>