Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the survival and transmission strategy of malaria parasites

14.08.2014

HP1 proteins are found in most eukaryotic organisms and are important regulators of gene silencing. In short, HP1 induces heritable condensation of chromosomal regions. As a result genes located within these regions are not expressed. Importantly, since this conformation is reversible HP1-controlled genes can become activated without requiring changes in the underlying DNA sequence.

The team led by Till Voss at the Swiss Tropical and Public Health Institute in collaboration with colleagues from the Nanyang Technological University in Singapore engineered a mutant parasite in which HP1 expression can be shut down at the push of a button. The researchers observed that in HP1-depleted parasites all of the 60 so-called var genes became highly active.

Each var gene encodes a distinct variant of the virulence factor PfEMP1, which is displayed on the surface of the parasite-infected red blood cell. PfEMP1 is a major target of the immune system in infected humans. Individual parasites normally express only one of the 60 different var/PfEMP1 proteins, while keeping all other members silenced.

By switching to another var/PfEMP1 variant the parasite is able to escape existing immune responses raised against previous variants. The new study shows that HP1 protects the PfEMP1 antigenic repertoire from being exposed to the immune system at once.

... more about:
»HP1 »Health »Malaria »PfEMP1 »Plasmodium »malaria »parasite »parasites

The new study shows that HP1 protects the PfEMP1 antigenic repertoire from being exposed to the immune system at once. "This finding is a major step forward in understanding the complex mechanisms responsible for antigenic variation," says Till Voss from the Swiss Tropical and Public Health Institute in Basel. "Furthermore, the tools generated in our study may be relevant for future research on malaria vaccines and immunity."

Lack of HP1 triggers production of malaria transmission stages

Importantly, the study also reveals that parasites lacking HP1 fail to copy their genomes and are hence unable to proliferate. "Initially, we thought all parasites in our culture dish were dead," says Till Voss.

However, it turned out that over 50% of these parasites were fully viable and differentiated into gametocytes, the sexual form of the malaria parasite. Gametocytes are the only form of the parasite capable of infecting a mosquito and therefore a prerequisite to transmit malaria between humans. "Such a high sexual conversion rate is unprecedented. Usually only around 1% of parasites undergo this switch," the researcher explains.

Further experiments show that a master transcription factor triggering sexual differentiation (termed AP2-G) is expressed at much higher levels in parasites lacking HP1. Under normal conditions, HP1 silences the expression of AP2-G and thus prevents sexual conversion in most parasites.

"The switch from parasite proliferation to gametocyte differentiation is controlled epigenetically by a HP1-dependent mechanism," says Till Voss. "This is really exciting. With this knowledge in hand, and with the identification of another epigenetic regulator involved in the same process (published in the same issue of Cell Host & Microbe), we are now able to specifically track the sexual conversion pathway in molecular detail." This may pave the route for the development of new drugs preventing sexual conversion and consequently malaria transmission.

###

The study was financed by the Swiss National Science Foundation, the Singaporean National Medical Research Council, the OPO Foundation, the Rudolf Geigy Foundation and the Boehringer Ingelheim Fonds.

Background: Malaria infection cycle

Malaria is a devastating infectious disease caused by unicellular parasites of the genus Plasmodium. Over 1 billion people worldwide live at high risk of contracting malaria and each year the disease causes more than 200 million clinical cases and 700'000 deaths, mostly among young African children. Plasmodium falciparum, one of five species known to elicit malaria in humans, is responsible for the vast majority of severe and fatal malaria outcomes.

Plasmodium parasites invade red blood cells, undergo intracellular replication, destroy their host cell and release up to 32 daughter parasites ready to infect new red blood cells. Repeated rounds of this vicious cycle lead to a massive expansion of the parasite population in the blood, which is responsible for all malaria-related morbidity and mortality. During each replication cycle a small number of parasites cease to proliferate and differentiate into sexual precursor cells called gametocytes. Only this form is able to infect the mosquito and therefore to transmit malaria to other humans.

Study

Heterochromatin Protein 1 Secures Survival and Transmission of Malaria Parasites. Nicolas M. B. Brancucci, Nicole L. Bertschi, Lei Zhu, Igor Niederwieser, Wai Hoe Chin, Rahel Wampfler, Céline Freymond, Matthias Rottmann, Ingrid Felger, Zbynek Bozdech, and Till S. Voss. Cell Host & Microbe 16, 165-176. 2014

Contact

Prof. Till Voss, Swiss Tropical and Public Health Institute till.voss@unibas.ch, Tel +41 61 284 81 61

Dr. Christian Heuss, Communication, Swiss Tropical and Public Health Institute, christian.heuss@unibas.ch. Tel +41 61 284 86 83

About the Swiss Tropical and Public Health Institute (Swiss TPH)

The Swiss Tropical and Public Health Institute (Swiss TPH) is one of Switzerland's leading public and global health institutions. Associated with the University of Basel, the institute combines research, teaching and service provisions at local, national and international level. Swiss TPH is a public sector organisation and receives around 17% of its budget of approximately 80 million francs from core contributions from the cantons of Basel-Stadt and Basel-Landschaft (10%) and from the federal government (8%). The remainder (82%) is acquired by competing for funds. The Institute has more than 600 employees working in 20 countries.

Christian Heuss | Eurek Alert!
Further information:
http://www.unibas.ch

Further reports about: HP1 Health Malaria PfEMP1 Plasmodium malaria parasite parasites

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>