Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New insights into the function of the main class of drug targets


About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors. In collaboration with researchers from the Paul Scherrer Institute, the group of Prof. Stephan Grzesiek at the Biozentrum of the University of Basel has now elucidated in detail how the structure of such a receptor changes when drugs bind and how the structural change transmits a signal to the cellular interior. These results have recently been published in “Nature”.

A wide variety of drugs such as beta-blockers against high blood pressure or drugs against allergies, cancer, Parkinson’s disease, HIV and others bind to cell surface proteins which belong to the family of G protein coupled receptors. The drug binding transmits a signal to the inside of the cell. Despite the fact that many structures of these receptors are known, it remained unclear how the signal is transmitted to the intracellular inside.

The NMR technology detects signals (shown as contour lines) from individual atoms (blue spheres) of the β1-adrenergic G protein coupled membrane receptor (grey ribbon diagram). Upon binding of drugs such as adrenalin (black chemical structure) the signals from the atoms change (from blue to yellow/red contours). This change allows the effect of drug binding to be followed throughout the receptor. © University of Basel, Biozentrum

To better understand the signal transduction function, Prof. Stephan Grzesiek’s team at the Biozentrum of the University of Basel, together with researchers from the Paul Scherrer Institute (PSI) have studied in detail one receptor – the β1-adrenergic receptor. Using Nuclear Magnetic Resonance spectroscopy (NMR), the scientists have been able to follow the motions of this receptor in response to various drugs, and have thus obtained unprecedented detailed insights into the general mechanism of G protein coupled receptor function.

Structural changes provide details on receptor function

The β1-adrenergic receptor is a protein embedded in the membrane of cardiac cells. It translates the binding of extracellular drug molecules into the activation of intracellular proteins. The hormone noradrenaline, for example, induces a signaling cascade in the cell, which at the end increases heart rate and blood pressure. So-called beta-blockers impede these effects by preventing the hormone from binding to the adrenergic receptor. Thereby, they reduce the heart rate. Structural details of the signal transduction caused by such receptor-ligand interactions have so far remained unclear.

“We have applied high resolution NMR to analyze the structural changes of the β1-adrenergic receptor upon binding of various drugs”, explains first author Shin Isogai. “We could observe how the receptor recognizes the binding partner, interprets its chemical structure and transmits this information to the inside of the cell by changing its structure. This insight into the functionality of the β1-adrenergic receptor at the atomic level can be applied to the whole family of G protein coupled receptors, which are well known as important drug targets.”

Prediction of drug efficacy

Using the NMR observation of the atomic nuclei, the scientists could see how deep the drugs insert into the receptor from the outside, how the drug pushes certain groups away and how it transmits this mechanical signal to the inside. Thus they identified crucial mechanical connections for the signal transmission within the receptor structure. The NMR signals also revealed the binding strength of the drugs and their potency to trigger an intracellular response. In fact, they could follow how a model protein for the intracellular response binds to the activated receptor.

“We are very happy that we could see these details. The receptors are notoriously difficult to study. Many researchers have tried for more than a decade”, emphasizes Isogai. “Now we can apply this method to see the function of individual amino acids and to study other receptors.” In the future, the NMR method may also be used for drug screening and drug development.

Original article:

Shin Isogai, Xavier Deupi, Christian Opitz, Franziska M. Heydenreich, Florian Brueckner, Gebhard F.X. Schertler, Dmitry B. Veprintsev and Stephan Grzesiek. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature; published online 3 February 2016.| doi: 10.1038/nature16577

Further information

Stephan Grzesiek, Universität Basel, Biozentrum, Tel.+41 61 267 21 00, E-Mail:

Katrin Bühler | Universität Basel
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>