Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight that 'mega' cells control the growth of blood-producing cells

20.10.2014

While megakaryocytes are best known for producing platelets that heal wounds, these "mega" cells found in bone marrow also play a critical role in regulating stem cells according to new research from the Stowers Institute for Medical Research.

In fact, hematopoietic stem cells differentiate to generate megakaryocytes in bone marrow. The Stowers study is the first to show that hematopoietic stem cells (the parent cells) can be directly controlled by their own progeny (megakaryocytes).


In this image, a hematopoietic stem cell (green) attaches to a megakaryocyte (red) in bone marrow.

Credit: Meng Zhao, Ph.D., Linheng Li Lab, Stowers Institute for Medical Research

The findings from the lab Stowers Investigator Linheng Li, Ph.D., described in the Oct. 19 issue of the journal Nature Medicine, could cause researchers to rethink what they know about the workings of megakaryocytes and potentially lead to new treatments for patients recovering from chemotherapy or organ transplantation.

"Our results suggest that megakaryocytes might be used clinically to facilitate adult stem cell regeneration and to expand cultured cells for adult stem cell transplants," says Meng Zhao, Ph.D., a postdoctoral fellow at Stowers and lead author on the study.

Stowers researchers discovered that megakaryocytes directly regulate the function of murine hematopoietic stem cells—adult stem cells that form blood and immune cells and that constantly renew the body's blood supply. These cells can also develop into all types of blood cells, including white blood cells, red blood cells, and platelets.

Because of their remarkable ability to renew themselves and differentiate into other cells, hematopoietic stems cells are the focus of intense research and have been used to treat many diseases and conditions. The transplantation of isolated human hematopoietic stem cells is used in the treatment of anemia, immune deficiencies and other diseases, including cancer.

Basic research has centered on identifying and characterizing hematopoietic stem cells, however, it is still not clear how hematopoietic stem cells actually work, and how they are regulated because of the complexity of the bone marrow microenvironment. Zhao and his colleagues discovered that as a terminally differentiated progeny, megakaryocytes regulate hematopoietic stem cells by performing two previously unknown functions.

"Megakaryocytes can directly regulate the amount of hematopoietic stem cells by telling the cells when they need to keep in the quiescent stage, and when they need to start proliferating to meet increased demand," Maintaining that delicate balance is important, he adds. "You don't want to have too many or too few hematopoietic stem cells."

These findings are supported by similar research from the laboratory of Paul S. Frenette, Ph.D., at the Albert Einstein College of Medicine, also reported in the Oct. 19 issue of Nature Medicine.

Employing the advanced technology of the Institute's Cytometry, Imaging and Histology centers, the researchers examined the relationship between megakaryocytes and hematopoietic stem cells in mouse bone marrow. In the course of their research, they found that the protein transforming growth factor B1 (TGF-B1), contained in megakaryocytes, signaled quiescence of hematopoietic stem cells. They also found that when under stress from chemotherapy, megakaryocytes signaled fibroblast growth factor 1 (FGF1), to stimulate the proliferation of hematopoietic stem cells.

"Our findings suggest that megakaryocytes are required for the recovery of hematopoietic stem cells post chemotherapy," explains Li. The discovery could provide insight for using megakaryocyte-derived factors, such as TGF-B1 and FGF1, clinically to facilitate regeneration of hematopoietic stem cells, he adds.

Engineering a megakaryocyte niche (a special environment in which stem cells live and renew) that supports the growth of hematopoietic stem cells in culture, is the next step for the researchers. Zhao and his colleagues are also investigating whether a megakaryocyte niche can be used to help expand human hematopoietic stem cells in vitro and stem cell transplantation for patients.

###

Other contributors to the study include John M. Perry, Ph.D., Heather Marshall, Ph.D., Pengxu Qian, Ph.D., and Xi C. He, Ph.D., with the Stowers Institute; Aparna Venkatraman, Ph.D., with the Stowers Institute and the Centre for Stem Cell Research at Christian Medical College in Vellore, India; and Jasimuddin Ahamed, Ph.D., with the Laboratory of Blood and Vascular Biology at Rockefeller University in New York.

The Stowers Institute for Medical Research funded the research.

Lay Summary of Findings

Patients recovering from chemotherapy or organ transplantation often have dangerously low levels of blood cells—leaving them weak and vulnerable to infection. Research findings from the Stowers Institute, reported in the Oct. 19 issue of the journal Nature Medicine, describe new insights that could potentially lead to treatments for patients with low blood cell counts.

Stowers Investigator Linheng Li, Ph.D., who led the study explains that megakaryocytes, "mega" cells found in bone marrow, regulate the function of human blood stem cells—adult stem cells that form blood and immune cells and constantly renew the body's blood supply. He and his colleagues found that megakaryocytes tell blood stem cells when their services aren't needed and when they need to start proliferating to meet increased demand. Study results suggest that megakaryocytes might be used clinically to jump-start adult stem cell regeneration and to expand cultured cells for adult stem cell transplants.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Since then, the Institute has spent over 900 million dollars in pursuit of its mission.

Currently, the Institute is home to nearly 550 researchers and support personnel; over 20 independent research programs; and more than a dozen technology-development and core facilities.

Kim Bland | Eurek Alert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>