Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insight That “Mega” Cells Control the Growth of Blood-Producing Cells

21.10.2014

While megakaryocytes are best known for producing platelets that heal wounds, these “mega” cells found in bone marrow also play a critical role in regulating stem cells according to new research from the Stowers Institute for Medical Research.

In fact, hematopoietic stem cells differentiate to generate megakaryocytes in bone marrow. The Stowers study is the first to show that hematopoietic stem cells (the parent cells) can be directly controlled by their own progeny (megakaryocytes).


Image courtesy of Meng Zhao, Ph.D., Linheng Li Lab, Stowers Institute for Medical Research

A hematopoietic stem cell (green) attaches to a megakaryocyte (red) in bone marrow.

The findings from the lab of Stowers Investigator Linheng Li, Ph.D., described in the Oct. 19 issue of the journal Nature Medicine, could cause researchers to rethink what they know about the workings of megakaryocytes and potentially lead to new treatments for patients recovering from chemotherapy or organ transplantation.

“Our results suggest that megakaryocytes might be used clinically to facilitate adult stem cell regeneration and to expand cultured cells for adult stem cell transplants,” says Meng Zhao, Ph.D., a postdoctoral fellow at Stowers and lead author on the study.
Stowers researchers discovered that megakaryocytes directly regulate the function of murine hematopoietic stem cells—adult stem cells that form blood and immune cells and that constantly renew the body’s blood supply. These cells can also develop into all types of blood cells, including white blood cells, red blood cells, and platelets.

Because of their remarkable ability to renew themselves and differentiate into other cells, hematopoietic stems cells are the focus of intense research and have been used to treat many diseases and conditions. The transplantation of isolated human hematopoietic stem cells is used in the treatment of anemia, immune deficiencies and other diseases, including cancer.

Basic research has centered on identifying and characterizing hematopoietic stem cells, however, it is still not clear how hematopoietic stem cells actually work, and how they are regulated because of the complexity of the bone marrow microenvironment. Zhao and his colleagues discovered that as a terminally differentiated progeny, megakaryocytes regulate hematopoietic stem cells by performing two previously unknown functions.

“Megakaryocytes can directly regulate the amount of hematopoietic stem cells by telling the cells when they need to keep in the quiescent stage, and when they need to start proliferating to meet increased demand.” Maintaining that delicate balance is important, he adds. “You don’t want to have too many or too few hematopoietic stem cells.”

These findings are supported by similar research from the laboratory of Paul S. Frenette, Ph.D., at the Albert Einstein College of Medicine, also reported in the Oct. 19 issue of Nature Medicine.

Employing the advanced technology of the Institute’s Cytometry, Imaging and Histology centers, the researchers examined the relationship between megakaryocytes and hematopoietic stem cells in mouse bone marrow. In the course of their research, they found that the protein transforming growth factor B1 (TGF-B1), contained in megakaryocytes, signaled quiescence of hematopoietic stem cells. They also found that when under stress from chemotherapy, megakaryocytes signaled fibroblast growth factor 1 (FGF1), to stimulate the proliferation of hematopoietic stem cells.

“Our findings suggest that megakaryocytes are required for the recovery of hematopoietic stem cells post chemotherapy,” explains Li. The discovery could provide insight for using megakaryocyte-derived factors, such as TGF-B1 and FGF1, clinically to facilitate regeneration of hematopoietic stem cells, he adds.

Engineering a megakaryocyte niche (a special environment in which stem cells live and renew) that supports the growth of hematopoietic stem cells in culture, is the next step for the researchers. Zhao and his colleagues are also investigating whether a megakaryocyte niche can be used to help expand human hematopoietic stem cells in vitro and stem cell transplantation for patients.

Other contributors to the study include John M. Perry, Ph.D., Heather Marshall, Ph.D., Pengxu Qian, Ph.D., and Xi C. He, Ph.D., with the Stowers Institute; Aparna Venkatraman, Ph.D., with the Stowers Institute and the Centre for Stem Cell Research at Christian Medical College in Vellore, India; and Jasimuddin Ahamed, Ph.D., with the Laboratory of Blood and Vascular Biology at Rockefeller University in New York.

The Stowers Institute for Medical Research funded the research.

Lay Summary of Findings

Patients recovering from chemotherapy or organ transplantation often have dangerously low levels of blood cells—leaving them weak and vulnerable to infection. Research findings from the Stowers Institute, reported in the Oct. 19 issue of the journal Nature Medicine, describe new insights that could potentially lead to treatments for patients with low blood cell counts. Stowers Investigator Linheng Li, Ph.D., who led the study explains that megakaryocytes, “mega” cells found in bone marrow, regulate the function of human blood stem cells—adult stem cells that form blood and immune cells and constantly renew the body’s blood supply. He and his colleagues found that megakaryocytes tell blood stem cells when their services aren’t needed and when they need to start proliferating to meet increased demand. Study results suggest that megakaryocytes might be used clinically to jump-start adult stem cell regeneration and to expand cultured cells for adult stem cell transplants.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Since then, the Institute has spent over 900 million dollars in pursuit of its mission.

Currently, the Institute is home to nearly 550 researchers and support personnel; over 20 independent research programs; and more than a dozen technology-development and core facilities.

Contact Information

Kim Bland
Head Science Communications
krk@stowers.org
Phone: 816-926-4015

Kim Bland | newswise

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>