Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Import Pathway into the Cell’s Powerhouses

17.09.2015

Freiburg researchers use artificial membranes to show how a particular protein reaches the mitochondria

Mitochondria serve as the powerhouses of the cell, converting the energy stored in foods into a form cells can use. When this important task fails, it can result in numerous diseases, particularly those affecting organs with a high energy consumption like the brain or the heart.


Networklike structure of mitochondria (green) from the model organism bakers' yeast.

Credit: Research group Meisinger

The Freiburg biochemistry professor Chris Meisinger, the Freiburg molecular medicine researcher Dr. Nora Vögtle, and the Freiburg pharmaceutical scientists Dr. Martin Holzer and Dr. Michael Keller have discovered a new import pathway proteins use to reach the mitochondria.

The common assumption among researchers up until now has been that proteins are always transported into the mitochondria via so-called import machines. The newly discovered import pathway, by contrast, is independent of the import machines. The research team published the study in the Journal of Cell Biology.

Mitochondria need more than 1000 different proteins to fulfill their vital tasks for the cells. Most of these proteins are produced in the cellular fluid and then imported into the mitochondria. The powerhouses of the cell have import machines in their membranes for this purpose.

These import machines, which are for their part also composed of various proteins, act as gatekeepers and sluices, allowing the mitochondria to import the new proteins they need from the cellular fluid.

The research team found a new import pathway for the protein Ugo1 that does not pass through the import machines. Ugo1 is localized in the outer membrane of mitochondria. The scientists succeeded in reconstructing the protein’s transport pathway in artificial membranes consisting of lipids, fat-like substances present in the membranes of mitochondria.

The import no longer functioned when the researchers constructed the artificial membrane without a particular lipid only present in small amounts, phosphatidic acid. Moreover, the scientists demonstrated that living cells with an elevated concentration of phosphatidic acid also contain a higher amount of Ugo1. “This study shows that contrary to what has previously been assumed, lipids can take on specific and active functions in the import of mitochondrial proteins,” says Chris Meisinger.

Chris Meisinger is a research group leader at the Institute of Biochemistry and Molecular Biology of the University of Freiburg as well as a member of the Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Nora Vögtle is a member of Meisinger’s research group. Martin Holzer and Michael Keller conduct research at the Institute of Pharmaceutical Technology and Biopharmacy of the University of Freiburg.

Original publication:
Vögtle, F.N., Keller, M., Taskin, A.A., Horvath, S.E., Guan, X.L., Prinz, C., Opalinska, M., Zorzin, C., van der Laan, M., Wenk, M.R., Schubert, R., Wiedemann, N., Holzer, M., and Meisinger, C. (2015). The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. Journal of Cell Biology.

Contact:
Prof. Dr. Chris Meisinger
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: +49 (0)761 / 203 - 5287
E-Mail: chris.meisinger@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-freiburg.de/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>