Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Import Pathway into the Cell’s Powerhouses

17.09.2015

Freiburg researchers use artificial membranes to show how a particular protein reaches the mitochondria

Mitochondria serve as the powerhouses of the cell, converting the energy stored in foods into a form cells can use. When this important task fails, it can result in numerous diseases, particularly those affecting organs with a high energy consumption like the brain or the heart.


Networklike structure of mitochondria (green) from the model organism bakers' yeast.

Credit: Research group Meisinger

The Freiburg biochemistry professor Chris Meisinger, the Freiburg molecular medicine researcher Dr. Nora Vögtle, and the Freiburg pharmaceutical scientists Dr. Martin Holzer and Dr. Michael Keller have discovered a new import pathway proteins use to reach the mitochondria.

The common assumption among researchers up until now has been that proteins are always transported into the mitochondria via so-called import machines. The newly discovered import pathway, by contrast, is independent of the import machines. The research team published the study in the Journal of Cell Biology.

Mitochondria need more than 1000 different proteins to fulfill their vital tasks for the cells. Most of these proteins are produced in the cellular fluid and then imported into the mitochondria. The powerhouses of the cell have import machines in their membranes for this purpose.

These import machines, which are for their part also composed of various proteins, act as gatekeepers and sluices, allowing the mitochondria to import the new proteins they need from the cellular fluid.

The research team found a new import pathway for the protein Ugo1 that does not pass through the import machines. Ugo1 is localized in the outer membrane of mitochondria. The scientists succeeded in reconstructing the protein’s transport pathway in artificial membranes consisting of lipids, fat-like substances present in the membranes of mitochondria.

The import no longer functioned when the researchers constructed the artificial membrane without a particular lipid only present in small amounts, phosphatidic acid. Moreover, the scientists demonstrated that living cells with an elevated concentration of phosphatidic acid also contain a higher amount of Ugo1. “This study shows that contrary to what has previously been assumed, lipids can take on specific and active functions in the import of mitochondrial proteins,” says Chris Meisinger.

Chris Meisinger is a research group leader at the Institute of Biochemistry and Molecular Biology of the University of Freiburg as well as a member of the Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Nora Vögtle is a member of Meisinger’s research group. Martin Holzer and Michael Keller conduct research at the Institute of Pharmaceutical Technology and Biopharmacy of the University of Freiburg.

Original publication:
Vögtle, F.N., Keller, M., Taskin, A.A., Horvath, S.E., Guan, X.L., Prinz, C., Opalinska, M., Zorzin, C., van der Laan, M., Wenk, M.R., Schubert, R., Wiedemann, N., Holzer, M., and Meisinger, C. (2015). The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. Journal of Cell Biology.

Contact:
Prof. Dr. Chris Meisinger
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: +49 (0)761 / 203 - 5287
E-Mail: chris.meisinger@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-freiburg.de/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>