Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Import Pathway into the Cell’s Powerhouses

17.09.2015

Freiburg researchers use artificial membranes to show how a particular protein reaches the mitochondria

Mitochondria serve as the powerhouses of the cell, converting the energy stored in foods into a form cells can use. When this important task fails, it can result in numerous diseases, particularly those affecting organs with a high energy consumption like the brain or the heart.


Networklike structure of mitochondria (green) from the model organism bakers' yeast.

Credit: Research group Meisinger

The Freiburg biochemistry professor Chris Meisinger, the Freiburg molecular medicine researcher Dr. Nora Vögtle, and the Freiburg pharmaceutical scientists Dr. Martin Holzer and Dr. Michael Keller have discovered a new import pathway proteins use to reach the mitochondria.

The common assumption among researchers up until now has been that proteins are always transported into the mitochondria via so-called import machines. The newly discovered import pathway, by contrast, is independent of the import machines. The research team published the study in the Journal of Cell Biology.

Mitochondria need more than 1000 different proteins to fulfill their vital tasks for the cells. Most of these proteins are produced in the cellular fluid and then imported into the mitochondria. The powerhouses of the cell have import machines in their membranes for this purpose.

These import machines, which are for their part also composed of various proteins, act as gatekeepers and sluices, allowing the mitochondria to import the new proteins they need from the cellular fluid.

The research team found a new import pathway for the protein Ugo1 that does not pass through the import machines. Ugo1 is localized in the outer membrane of mitochondria. The scientists succeeded in reconstructing the protein’s transport pathway in artificial membranes consisting of lipids, fat-like substances present in the membranes of mitochondria.

The import no longer functioned when the researchers constructed the artificial membrane without a particular lipid only present in small amounts, phosphatidic acid. Moreover, the scientists demonstrated that living cells with an elevated concentration of phosphatidic acid also contain a higher amount of Ugo1. “This study shows that contrary to what has previously been assumed, lipids can take on specific and active functions in the import of mitochondrial proteins,” says Chris Meisinger.

Chris Meisinger is a research group leader at the Institute of Biochemistry and Molecular Biology of the University of Freiburg as well as a member of the Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Nora Vögtle is a member of Meisinger’s research group. Martin Holzer and Michael Keller conduct research at the Institute of Pharmaceutical Technology and Biopharmacy of the University of Freiburg.

Original publication:
Vögtle, F.N., Keller, M., Taskin, A.A., Horvath, S.E., Guan, X.L., Prinz, C., Opalinska, M., Zorzin, C., van der Laan, M., Wenk, M.R., Schubert, R., Wiedemann, N., Holzer, M., and Meisinger, C. (2015). The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1. Journal of Cell Biology.

Contact:
Prof. Dr. Chris Meisinger
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: +49 (0)761 / 203 - 5287
E-Mail: chris.meisinger@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-freiburg.de/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>