Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genome-editing platform significantly increases accuracy of CRISPR-based systems

28.04.2014

A next-generation genome editing system developed by Massachusetts General Hospital (MGH) investigators substantially decreases the risk of producing unwanted, off-target gene mutations.

In a paper receiving online publication in Nature Biotechnology, the researchers report a new CRISPR-based RNA-guided nuclease technology that uses two guide RNAs, significantly reducing the chance of cutting through DNA strands at mismatched sites.

"This system combines the ease of use of the widely adopted CRISPR/Cas system with a dimerization-dependent nuclease activity that confers higher specificity of action," says J. Keith Joung, MD, PhD, associate chief for Research in the MGH Department of Pathology and senior author of the report. "Higher specificity will be essential for any future clinical use of these nucleases, and the new class of proteins we describe could provide an important option for therapeutic genome editing."

Engineered CRISPR-Cas nucleases – genome-editing tools that combine a short RNA segment matching its DNA target with a DNA-cutting enzyme called Cas9 – have been the subject of much investigation since their initial development in 2012.

Easier to use than the earlier ZFN (zinc finger nuclease) and TALEN (transcription activator-like effector nuclease) systems, they have successfully induced genomic changes in several animal models systems and in human cells. But in a previous Nature Biotechnology paper published in June 2013, Joung's team reported that CRISPR-Cas nucleases could produce additional mutations in human cells, even at sites that differed from the DNA target by as much as five nucleotides.

To address this situation, the investigators developed a new platform in which the targeting function of Cas9 was fused to a nuclease derived from a well-characterized enzyme called Fokl, which only functions when two copies of the molecule are paired, a relationship called dimerization.

This change essentially doubled the length of DNA that must be recognized for cleavage by these new CRISPR RNA-guided Fokl nucleases (RFNs), significantly increasing the precision of genome editing in human cells. Importantly, Joung and his colleagues also demonstrated that these new RFNs are as effective at on-target modification as existing Cas9 nucleases that target a shorter DNA sequence.

"By doubling the length of the recognized DNA sequence, we have developed a new class of genome -editing tools with substantially improved fidelity compared with existing wild-type Cas9 nucleases and nickases (enzymes that cleave a single DNA strand)," says Joung, an associate professor of Pathology at Harvard Medical School. The research team also has developed software enabling users to identify potential target sites for these RFNs and incorporated that capability into ZiFiT Targeter, a software package freely available at http://zifit.partners.org.

###

Lead author of the Nature Biotechnology report is Shengdar Tsai, PhD, of the MGH Molecular Pathology Unit. Additional co-authors are Nicolas Wyvekens, Cyd Khayter, Jennifer Foden, Vishal Thapar, Deepak Reyon, PhD, Mathew Goodwin and Martin Aryee, PhD, all of MGH Molecular Pathology. The study was supported by National Institutes of Health Director's Pioneer Award DP1 GM105378; NIH grants R01 GM088040, P50 HG005550, and R01 AR063070; and by the Jim and Ann Orr Massachusetts General Hospital MGH Research Scholar Award. Joung is a co-founder of Editas Medicine, Inc., which has an exclusive option to license the new CRISPR RNA-guided Fokl nuclease technology for therapeutic applications.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!

Further reports about: Biotechnology CRISPR DNA MGH Pathology RNA-guided enzyme sequence therapeutic

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>