Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New functions for 'junk' DNA?

01.04.2014

Non-coding DNA sequences found in all plants may have undiscovered roles in basic plant development and response to the environment

DNA is the molecule that encodes the genetic instructions enabling a cell to produce the thousands of proteins it typically needs. The linear sequence of the A, T, C, and G bases in what is called coding DNA determines the particular protein that a short segment of DNA, known as a gene, will encode.


This image shows the evolutionary relationships among the species analyzed for conserved non-coding sequences. 'Myr' stands for million years ago. Ellipses are approximate times of whole-genome duplications.

Credit: Diane Burgess

But in many organisms, there is much more DNA in a cell than is needed to code for all the necessary proteins. This non-coding DNA was often referred to as "junk" DNA because it seemed unnecessary. But in retrospect, we did not yet understand the function of these seemingly unnecessary DNA sequences.

We now know that non-coding DNA can have important functions other than encoding proteins. Many non-coding sequences produce RNA molecules that regulate gene expression by turning them on and off. Others contain enhancer or inhibitory elements.

Recent work by the international ENCODE (Encyclopedia of DNA Elements) Project (1, 2) suggested that a large percentage of non-coding DNA, which makes up an estimated 95% of the human genome, has a function in gene regulation. Thus, it is premature to say that "junk" DNA does not have a function—we just need to find out what it is!

To help understand the importance of this large amount of non-coding DNA in plants, Diane Burgess and Michael Freeling at the University of California, Berkeley have identified numerous conserved non-coding sequences (CNSs) of DNA that are found in a wide variety of plant species, including rice, banana, and cacao.

DNA sequences that are highly conserved, meaning that they are identical or nearly so in a variety of organisms, are likely to have important functions in basic biological processes. For example, the gene encoding ribosomal RNA, an essential part of the protein-synthesizing machinery needed by cells of all organisms, is highly conserved. Changes in the sequence of this key molecule are poorly tolerated, so ribosomal RNA sequences have changed relatively little over millions of years of evolution.

To identify the most highly conserved plant CNSs, Burgess and Freeling compared the genome (one copy of all the DNA in an organism) of the model plant Arabidopsis, a member of the mustard family, with the genome of columbine, a distantly related plant of the buttercup family.

The phylogenetic tree (see figure) shows the evolutionary relationships among the dicot (yellow) and monocot (blue) species they studied. Branch points represent points of divergence of two species from a common ancestor. Sequences in common between these two plants, which diverged over 130 million years ago, are likely to have important functions or they would have been lost due to random mutations or insertions or deletions.

They found over 200 CNSs in common between these distantly related species. In addition, 59 of these CNSs were also found in monocots, which are even more distant evolutionarily, and these were termed deep CNSs. Finally, they showed that 51 of these appear to be found in all flowering plants, based on their occurrence in Amborella, a flowering plant that diverged from all of the above plants even before the monocot-dicot split (see figure).

So what could be the function of these deep CNSs? We can get clues by analyzing the types of genes with which these CNSs are associated. The researchers found that nearly all of the deep CNSs are associated with genes involved in basic and universal biological processes in flowering plants—processes such as development, response to hormones, and regulation of gene expression.

They found that the majority of these CNSs are associated with genes involved in tissue and organ development, post-embryonic differentiation, flowering, and production of reproductive structures. Others are associated with hormone- and salt-responsive genes or with genes encoding transcription factors, which are regulatory proteins that control gene expression by turning other genes on and off.

In addition, they showed that these CNSs are enriched for binding sites for transcription factors, and propose that the function of some of this non-coding DNA is to act as a scaffold for organization of the gene expression machinery. The binding sites they found are known sequences implicated in other plants as necessary for response to biotic and abiotic stress, light, and hormones.

Furthermore, they discovered that a number of the CNSs could produce RNAs that have extensive double-stranded regions. These double-stranded regions have been shown to be involved in RNA stability, degradation, and in regulation of gene expression. Twelve of the most 59 highly conserved CNSs are associated with genes whose protein products interact with RNA. Clearly, these DNA sequences are not merely "junk!"

Now that Burgess and Freeling have identified the most highly conserved non-coding DNA sequences in flowering plants, future scientists have a better idea of which regions of the genome to focus on for functional studies. Do the predicted transcription factor-binding sites actually bind known or novel transcription factors? Do CNSs organize or regulate the gene expression machinery? Do CNSs encode RNAs that regulate fundamental processes in plants? The answers to these and many related questions will be easier to answer now that we have this set of deep CNSs that are likely to play important roles in basic cellular processes in plants.

###

References

(1) National Human Genome Research Institute (see http://www.genome.gov/10005107)

(2) Genome Research, Vol. 17, June 2007, special issue on ENCODE.

Author:
Gregory Bertoni
gbertoni@aspb.org
Science Editor, The Plant Cell
American Society of Plant Biologists

This work was supported by The National Science Foundation (IOS1248106).

Full citation: Burgess, D., and Freeling, F. (2014). The most deeply conserved noncoding sequences in plants serve similar functions to those in vertebrates despite large differences in evolutionary rates. Plant Cell 10.1105/tpc.113.121905.

Tyrone Spady | EurekAlert!

Further reports about: Biologists DNA RNA function genes non-coding proteins sequences transcription

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>