Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on how cardiac arrhythmias develop

05.05.2015

Cardiac arrhythmias affect a high proportion of the aging population. Mitochondria are the ‘powerhouses of the cells’, and scientists in Cologne have now shown that even a few heart cells with reduced mitochondrial function are sufficient to trigger arrhythmias.

Mitochondria are cell organelles that are involved in many functions. They are considered to be the ‘powerhouses of the cells’ because they convert nutrients into energy.

They are involved in the regulation of programmed cell death, when a cell is no longer needed or even constitutes a risk to the body. Mitochondria have their own DNA (mitochondrial DNA, mtDNA), which accumulates point mutations in its sequence or loses large portions (mtDNA deletions) during the aging process.

If the number of altered mtDNA copies increases too much, there is a dramatic disruption of mitochondrial function and, as a result, of cell function. This phenomenon occurs in individual cells in many organs during the aging process, giving rise to a ‘tissue mosaic’ of a few isolated cells with mitochondrial dysfunction scattered amongst many normal cells.

Until recently it was not clear whether these few cells with defective mitochondria could be responsible for the loss of tissue and organ function associated with aging. Working in Prof. Rudolf Wiesner’s research team in Cologne, Dr. Olivier Baris and his co-workers looked at this tissue mosaic more closely in the context of cardiac arrhythmias.

Taking an experimental approach to the problem, the Cologne scientists used mice that express a mutated mitochondrial protein specifically in the heart as model organisms. The normal protein is required for proper mtDNA replication. In the clinic, the same mutation in patients leads to the accumulation of mtDNA deletions and severe neurological disease. Dr. Olivier Baris and his fellow scientists decided to investigate the heart because this organ is particularly dependent on mitochondrial energy production.

Dr. Baris: “The incidence of cardiac arrhythmias increases dramatically with age and contributes significantly to morbidity and mortality in the elderly.” Indeed, the mutated protein in the mouse heart was shown to cause the accumulation of mtDNA deletions and the development of a tissue mosaic.

Analysis of long-term electrocardiogram recordings in 18-month-old mice showed typical cardiac arrhythmias that are similar to those described in elderly people (spontaneous premature heart beats and blocks of the conduction of the electrical wave), and which intensify under stress. No such increase in arrhythmias was observed in 12-month-old mice that had three times fewer cells with mitochondrial dysfunction.

The results show promise for future new therapeutic approaches. As Dr. Baris concludes: “Our research has shown that the proportion of heart cells with impaired mitochondrial function has to exceed a threshold value in order to cause a functional disturbance of the organ.

A significant finding was that no other signs of cardiac dysfunction (increased scarring, dilatation of the heart or reduced pump function) were found in the mutated hearts.

We therefore showed that indeed the characteristic tendency towards arrhythmias in aging human hearts could be induced by the random accumulation of defective mitochondria in a few isolated cells and the resultant tissue mosaic.

The challenge of the future is to understand how altered mitochondrial function in just a few heart cells impacts the function of the entire organ. The scientists expect that it will be possible to develop new pharmacological treatment strategies for this aging-associated electrical conduction disorder in the heart – important new findings in aging research from CECAD.

Contact:
Dr. Olivier Baris
CECAD Cluster of Excellence
University of Cologne
Phone +49 221 478-7901
obaris@uni-koeln.de

Astrid Bergmeister MBA
Head of CECAD PR & Marketing
CECAD Cluster of Excellence
University of Cologne
Phone + 49 (0) 221-478 84043
astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://www.cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>