Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New EU project: Guiding light for the world’s brightest light sources

06.10.2015

Two special kinds of light have changed the landscape of research. Advanced visible-spectrum optical lasers have propelled studies into ultrafast processes, new materials, telecommunications, while intense X-rays produced at synchrotrons have helped image tiny structures and otherwise invisible parts of matter, enabling leaps in biochemistry, pharmacology, and materials science. New developments have enhanced the generation of X-rays, resulting in the creation of large international research centres. The EU is now funding a 7 million-euro effort to bring these research centres together through the European Cluster of Advanced Laser Light Sources (EUCALL) project.

The project will be managed by European XFEL, an X-ray free-electron laser facility currently under construction in the Hamburg area of Germany.


EUCALL Logo

Thousands of scientists in biomedicine, physics, materials science and many other fields from around the world come to these centres to use the unique radiation available there. These large-scale facilities, which are also known as research infrastructures (RI), provide scientists access to light that is otherwise unavailable at a science laboratory.

Particle accelerator-driven facilities called synchrotrons have been providing ultrabright X-rays, and more recent X-ray free-electron lasers have been pushing the limits of accelerator-based technologies to generate ultrashort pulses of laser-like X-ray light at unprecedented brightness.

In recent years, specialized optical lasers have been used to generate intense X-rays as well; the new availability of such sources to the scientific community has led to the construction of RIs. EUCALL aims to help both accelerator- and laser-driven X-ray facilities even better serve the scientific community.

Within the EUCALL project, the two types of large-scale X-ray RIs in Europe collaborate for the first time in a comprehensive way on technical, scientific, and strategic issues. One of the project’s main goals is to make substantial scientific and technological contributions through new synergies between laser-driven and accelerator-driven X-ray RIs.

Under EUCALL, the RIs can work together on common methodologies and research opportunities, potentially sparking new scientific investigations, as well as new applications and private-sector innovation, and develop tools to sustain this interaction in the future. The project will allow the involved RIs to provide scientists from around the world better access to highly sought-out X-ray facilities.

To accomplish these goals, the EUCALL partners will work together on strategic and technological developments that can be used at all facilities, along with better protocols to enable scientists to make the best possible use of limited experiment time.

Three major international RIs have a key role in EUCALL: European XFEL, a 3.4 km-long X-ray free-electron laser that will open in 2017 and use ultrabright X-ray laser flashes to investigate nanoscale particles, ultrafast processes, and extreme states of matter; the Extreme Light Infrastructure (ELI), a trio of cutting-edge high-power optical-laser laboratories in the Czech Republic, Hungary, and Romania that will become operational in 2018; and the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, which is one of the most prominent X-ray research centres in the world.

Also involved are five other institutes: DESY, which operates the FLASH and PETRA III X-ray user facilities, in Hamburg, Germany; Elettra, which operates the 2-stage seeded FERMI free-electron laser user facility, in Trieste, Italy; Helmholtz-Zentrum Dresden-Rossendorf, which operates high-power optical-laser facilities and a free-electron laser, in Germany; Lund University, which is building the MAX-IV synchrotron, in Sweden; and Paul Scherrer Institut, which is building the SwissFEL X-ray free-electron laser, in Villigen, Switzerland.

All of these RIs have their foundations in broad experience developed at a large number of optical-laser- and accelerator-based X-ray laboratories. Therefore, EUCALL also includes the existing EU collaborations of these facilities, LASERLAB-Europe and FELs of Europe, as well as three partners that work closely with ELI. “EUCALL enables optical-laser- and accelerator-based X-ray facilities in Europe to develop common strategies and new technologies to help our scientific users engage in even more research possibilities”, says European XFEL Scientific Director Thomas Tschentscher, who will act as EUCALL project coordinator. “Implementation of these strategies and efforts will help European research maintain a leading role in many critical areas.”

“Coinciding with the International Year of Light, EUCALL is the first serious effort to bring together scientific communities who have been using X-ray light in parallel to each other, and from different scientific and technological backgrounds”, says ELI Director-General Wolfgang Sandner. “ELI highly welcomes the increased research opportunities and innovation potential that will arise from this synergy, to the benefit of its European and international users.”

The funding from the EU will be used by each RI to support some of the development costs on new technologies, conduct efficiency studies, and hire new staff assigned specifically to EUCALL tasks. Among these tasks will be four research initiatives focusing on new hardware and software for the two laser light source communities. A first research goal is to develop a simulation platform that will allow users to more accurately model their experiments before coming to a facility for beamtime. The aim is to make user proposals and experiments more focused so that scientists can make the best possible use of limited experiment time. Another research goal is to develop an adaptable software and firmware package that can handle the massive data throughput generated by imaging detectors operated at the high or ultrahigh repetition rates of the X-ray and laser flashes at these facilities.

The other two research areas look to develop common scientific hardware. One aim is to develop an efficient method for users to identify positions of samples to be targeted with laser light through use of electron and light microscopy. A final goal involves developing a suite of advanced X-ray beam diagnostics to accurately measure the incident photon intensity and the wave front of coherent X-ray beams, as well as to precisely determine the X-ray pulse arrival time on the sample for ultrafast experiments.

European XFEL will host a EUCALL kick-off meeting on 29–30 October 2015 in Hamburg. Beyond the three-year scope of EUCALL, the project looks to establish a long-term collaboration between the involved RIs, with the aim of further developing common capabilities and fostering closer cooperation.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654220.

Press contact:
Dr. Bernd Ebeling
+49 40 8998 6921
press@xfel.eu

Science contact:
Dr. Thomas Tschentscher
EUCALL Coordinator
+49 40 8998 3904
thomas.tschentscher@xfel.eu

About European XFEL
The European XFEL, currently under construction in the Hamburg area, will be an international research facility of superlatives: 27 000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organizations worldwide. By the time the facility starts user operation in 2017, the company will have a workforce of about 280 employees. With construction and commissioning costs of 1.22 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 11 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland.

Weitere Informationen:

http://www.xfel.eu

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft

Further reports about: X-ray X-ray light XFEL laser light light sources new technologies

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>