Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New EU project designed to link diagnosis and treatment of diseases over the long term


Joint research project aims at the improvement of companion diagnostics and therapy of tumor diseases

An international team from four EU countries plans to use an innovative concept to improve the use of companion diagnostics in disease and develop new approaches to therapy in the long term. The idea is to combine the use of nanomedicines and short half-life radionuclides for imaging purposes in the living organism.

Enhanced contrast will significantly improve the accuracy of cancer diagnosis.

Ill./©: Click It Consortium

First the nanomedicines, in the form of synthetic nanoparticles or antibodies, are introduced in the body where they actively or passively accumulate in certain organisms or cells. The second stage involves the delivery of a radioactive substance.

Where the substance encounters the nanoparticles, a rapid chemical reaction occurs and the two bind together, while the remainder of the substance is eliminated from the body. With the help of an imaging technique, it is now possible to precisely pinpoint where the nanoparticles are located, to what extent they have accumulated at the target site, and what effect they are having on the disease pathology. The EU is funding the project to the tune of EUR 6 million over the next five years.

Participating are physicians and clinicians from Copenhagen, chemists at TU Wien, and Johannes Gutenberg University Mainz (JGU), together with commercial partners from Austria and the Netherlands. The project was launched with the clear ambition of transferring the technology into clinical practice.

The research consortium aims at improving companion diagnostics and, at the same time, reducing exposure of patients to radioactivity to an absolute minimum. Companion diagnostics are tools in the form of medical devices that are used to assess medications in advance and can help determine which patients are likely to benefit from a treatment. For example, it is already possible to treat HER2-positive breast cancer using antibody therapy with relatively high therapeutic success rates.

However, only about 20 percent of all breast tumors are HER2-positive and the treatment is very expensive. It is thus advisable to first establish whether a patient is HER2-positive before initiating the therapy. Companion diagnostics can thus be used to determine if an individual patient is suitable for a specific form of therapy and would benefit from it or whether an alternative form of treatment should be preferred. In addition, the outcome of the therapy can be subsequently visualized. It is thus possible that the project may also contribute towards the future development of medicines that are more effective, more rapid, and less expensive.

"The system we are proposing would allow us to do far more than simply determine exactly where the nanoparticles are in the body," explained polymer chemist Dr. Matthias Barz of the Institute of Organic Chemistry at Mainz University, who is involved in the project. "There is the imaging factor that will allow us to see where our nanoparticles with their specific function are located in the body. And, eventually, it should at some point be possible to use our approach in radiotherapy – making it truly unique."

The two cooperation partners in Mainz, Dr. Matthias Barz and Professor Rudolf Zentel, are contributing their expertise in the production of microparticles of nanoparticles with specific functions. The European Union is making EUR 300,000 available over the next three years to fund their project.

Further information:
Dr. Matthias Barz
Institute of Organic Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone: +49 6131 39-26256
fax: +49 6131 39-24778

Weitere Informationen: - press release ; - Zentel Group at the Institute of Organic Chemistry at Johannes Gutenberg University Mainz

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>