Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery solves problem of anti-inflammatory substance

04.03.2014

There have been great expectations regarding the production of a drug to block the enzyme LTA4 hydrolase, which plays a key role in the body's inflammatory response.

However, in clinical trials, such molecules have proven to be only moderately effective. Now, researchers at Karolinska Institutet have successfully refined their understanding of why previous substances have been less effective – and in so doing have produced a molecule that gets around the problem. Consequently, there is once again hope of a new anti-inflammatory drug based on the principal of blocking LTA4 hydrolase, which could provide relief in diseases such as COPD, the vascular disease arteriosclerosis and chronic eczema.

Dr. Jesper Z. Haeggström, Karolinska Institutet

Jesper Z. Haeggström is a Professor of Molecular Eicosanoid Research at Karolinska Institutet in Stockholm, Sweden.

Credit: Karolinska Institutet

The enzyme LTA4 hydrolase has two functions. One is to produce LTB4, which contributes to the inflammatory reaction. The other is to inactivate the tripeptide Pro-Gly-Pro, which is formed during degradation of connective tissue and which also contributes to inflammation. In the first pathway, the enzyme LTA4 hydrolase evokes an inflammatory process, while it contributes to healing in the second.

"It could be considered remarkable that the same enzyme has two activities that are completely opposite. But this is more understandable if you look at it over time: in the first stage, the enzyme creates inflammation at the site of an injury, thus attracting white blood cells, and in the second stage it contributes to healing by inhibiting the inflammation," says Jesper Z. Haeggström, Professor of Molecular Eicosanoid Research in the Department of Medical Biochemistry and Biophysics at Karolinska Institutet.

Previous attempts to produce an anti-inflammatory drug that blocks LTA4 hydrolase have knocked out both of these functions. This is probably why the effects have so far been only moderate. Using x-ray crystallography to study LTA4 hydrolase, Jesper Z. Haeggström and his colleagues have been able to demonstrate that the formation of LTB4, which contributes to the inflammatory process and the inactivation of Pro-Gly-Pro, takes place at different parts of the enzyme's active site – the part of the enzyme used for biochemical communication.

They have used this information to produce a molecule that inhibits LTA4 hydrolase from producing LTB4, while the inactivation of Pro-Gly-Pro is maintained. This means that LTA4 hydrolase acts as an anti-inflammatory in both pathways; awakening new hopes of producing a drug that acts on this enzyme.

In the long-term, the researchers believe that a drug based on their molecule could be used to treat COPD (chronic obstructive pulmonary disease), arteriosclerosis and various types of inflammatory skin disease such as chronic eczema. The study has been financed by the Swedish Research Council, the EU, VINNOVA, Stockholm County Council and Dr. Hans Kröner Graduiertenkolleg.

###

Publication: 'Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase and development of an epoxide hydrolase selective inhibitor', Alena Stsiapanava, Ulrika Olsson, Min Wan, Thea Kleinschmidt, Dorothea Rutishauser, Roman Zubarev, Bengt Samuelsson, Agnes Rinaldo-Matthis and Jesper Z. Haeggström, PNAS, online early edition 3-7 March 2014.

Karolinska Institutet - a medical university: ki.se/english

Press Office | EurekAlert!

Further reports about: COPD LTB4 activities anti-inflammatory arteriosclerosis eczema enzyme healing hydrolase inflammation inflammatory skin

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>