Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery solves problem of anti-inflammatory substance

04.03.2014

There have been great expectations regarding the production of a drug to block the enzyme LTA4 hydrolase, which plays a key role in the body's inflammatory response.

However, in clinical trials, such molecules have proven to be only moderately effective. Now, researchers at Karolinska Institutet have successfully refined their understanding of why previous substances have been less effective – and in so doing have produced a molecule that gets around the problem. Consequently, there is once again hope of a new anti-inflammatory drug based on the principal of blocking LTA4 hydrolase, which could provide relief in diseases such as COPD, the vascular disease arteriosclerosis and chronic eczema.

Dr. Jesper Z. Haeggström, Karolinska Institutet

Jesper Z. Haeggström is a Professor of Molecular Eicosanoid Research at Karolinska Institutet in Stockholm, Sweden.

Credit: Karolinska Institutet

The enzyme LTA4 hydrolase has two functions. One is to produce LTB4, which contributes to the inflammatory reaction. The other is to inactivate the tripeptide Pro-Gly-Pro, which is formed during degradation of connective tissue and which also contributes to inflammation. In the first pathway, the enzyme LTA4 hydrolase evokes an inflammatory process, while it contributes to healing in the second.

"It could be considered remarkable that the same enzyme has two activities that are completely opposite. But this is more understandable if you look at it over time: in the first stage, the enzyme creates inflammation at the site of an injury, thus attracting white blood cells, and in the second stage it contributes to healing by inhibiting the inflammation," says Jesper Z. Haeggström, Professor of Molecular Eicosanoid Research in the Department of Medical Biochemistry and Biophysics at Karolinska Institutet.

Previous attempts to produce an anti-inflammatory drug that blocks LTA4 hydrolase have knocked out both of these functions. This is probably why the effects have so far been only moderate. Using x-ray crystallography to study LTA4 hydrolase, Jesper Z. Haeggström and his colleagues have been able to demonstrate that the formation of LTB4, which contributes to the inflammatory process and the inactivation of Pro-Gly-Pro, takes place at different parts of the enzyme's active site – the part of the enzyme used for biochemical communication.

They have used this information to produce a molecule that inhibits LTA4 hydrolase from producing LTB4, while the inactivation of Pro-Gly-Pro is maintained. This means that LTA4 hydrolase acts as an anti-inflammatory in both pathways; awakening new hopes of producing a drug that acts on this enzyme.

In the long-term, the researchers believe that a drug based on their molecule could be used to treat COPD (chronic obstructive pulmonary disease), arteriosclerosis and various types of inflammatory skin disease such as chronic eczema. The study has been financed by the Swedish Research Council, the EU, VINNOVA, Stockholm County Council and Dr. Hans Kröner Graduiertenkolleg.

###

Publication: 'Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase and development of an epoxide hydrolase selective inhibitor', Alena Stsiapanava, Ulrika Olsson, Min Wan, Thea Kleinschmidt, Dorothea Rutishauser, Roman Zubarev, Bengt Samuelsson, Agnes Rinaldo-Matthis and Jesper Z. Haeggström, PNAS, online early edition 3-7 March 2014.

Karolinska Institutet - a medical university: ki.se/english

Press Office | EurekAlert!

Further reports about: COPD LTB4 activities anti-inflammatory arteriosclerosis eczema enzyme healing hydrolase inflammation inflammatory skin

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>