Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery solves problem of anti-inflammatory substance

04.03.2014

There have been great expectations regarding the production of a drug to block the enzyme LTA4 hydrolase, which plays a key role in the body's inflammatory response.

However, in clinical trials, such molecules have proven to be only moderately effective. Now, researchers at Karolinska Institutet have successfully refined their understanding of why previous substances have been less effective – and in so doing have produced a molecule that gets around the problem. Consequently, there is once again hope of a new anti-inflammatory drug based on the principal of blocking LTA4 hydrolase, which could provide relief in diseases such as COPD, the vascular disease arteriosclerosis and chronic eczema.

Dr. Jesper Z. Haeggström, Karolinska Institutet

Jesper Z. Haeggström is a Professor of Molecular Eicosanoid Research at Karolinska Institutet in Stockholm, Sweden.

Credit: Karolinska Institutet

The enzyme LTA4 hydrolase has two functions. One is to produce LTB4, which contributes to the inflammatory reaction. The other is to inactivate the tripeptide Pro-Gly-Pro, which is formed during degradation of connective tissue and which also contributes to inflammation. In the first pathway, the enzyme LTA4 hydrolase evokes an inflammatory process, while it contributes to healing in the second.

"It could be considered remarkable that the same enzyme has two activities that are completely opposite. But this is more understandable if you look at it over time: in the first stage, the enzyme creates inflammation at the site of an injury, thus attracting white blood cells, and in the second stage it contributes to healing by inhibiting the inflammation," says Jesper Z. Haeggström, Professor of Molecular Eicosanoid Research in the Department of Medical Biochemistry and Biophysics at Karolinska Institutet.

Previous attempts to produce an anti-inflammatory drug that blocks LTA4 hydrolase have knocked out both of these functions. This is probably why the effects have so far been only moderate. Using x-ray crystallography to study LTA4 hydrolase, Jesper Z. Haeggström and his colleagues have been able to demonstrate that the formation of LTB4, which contributes to the inflammatory process and the inactivation of Pro-Gly-Pro, takes place at different parts of the enzyme's active site – the part of the enzyme used for biochemical communication.

They have used this information to produce a molecule that inhibits LTA4 hydrolase from producing LTB4, while the inactivation of Pro-Gly-Pro is maintained. This means that LTA4 hydrolase acts as an anti-inflammatory in both pathways; awakening new hopes of producing a drug that acts on this enzyme.

In the long-term, the researchers believe that a drug based on their molecule could be used to treat COPD (chronic obstructive pulmonary disease), arteriosclerosis and various types of inflammatory skin disease such as chronic eczema. The study has been financed by the Swedish Research Council, the EU, VINNOVA, Stockholm County Council and Dr. Hans Kröner Graduiertenkolleg.

###

Publication: 'Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase and development of an epoxide hydrolase selective inhibitor', Alena Stsiapanava, Ulrika Olsson, Min Wan, Thea Kleinschmidt, Dorothea Rutishauser, Roman Zubarev, Bengt Samuelsson, Agnes Rinaldo-Matthis and Jesper Z. Haeggström, PNAS, online early edition 3-7 March 2014.

Karolinska Institutet - a medical university: ki.se/english

Press Office | EurekAlert!

Further reports about: COPD LTB4 activities anti-inflammatory arteriosclerosis eczema enzyme healing hydrolase inflammation inflammatory skin

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>