Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New details of the transmission of stimuli in living organisms unveiled


Researchers unveil new details of how cells in a living organism process stimuli. So-called G-proteins, which help conduct external stimuli that reach a cell into its interior, play a central role here. For the first time, the study shows which parts of the G-proteins are vital for their function. Researchers from the Paul Scherrer Institute PSI, ETH Zurich, the pharmaceutical company Roche and the British MRC Laboratory of Molecular Biology report their results in the journals Nature and Nature Structural and Molecular Biology.

When we see an object, the following essentially happens: the light emanating from the object hits our eye, whereupon nerve cells transmit a signal to the brain, which the brain interprets as an image of the object. The signal transmission is triggered by the protein rhodopsin, a so-called G-protein-couple receptor.

The study’s leading researcher Dmitry Veprintsev in one of PSI’s labs, where the G-proteins are prepared for the measurements.

Paul Scherrer Institute/Mahir Dzambegovic

Simplified depiction of the structure of the G-protein studied (in grey) and the receptor coupled to it. The spheres represent the amino acids that are crucial for the activation of the G-protein.

Dawei Sun

This protein in the retinal cells is activated as soon as light reaches the eye. Rhodopsin acts as a switch which, once flicked, transmits the signal to G-proteins inside the cell. These amplify the signal and relay it in the cell. Many pairs of G-protein-coupled receptors and G-proteins work in a similar way.

The adrenalin receptor in muscle cells, for instance, is activated when the body releases the hormone adrenalin in a stress situation. In this case, the corresponding G-protein relays the signal, which culminates in the tensing of the muscles.

A team headed by researchers from the Paul Scherrer Institute (PSI) and ETH Zurich together with the the British MRC Laboratory of Molecular Biology and the pharmaceutical company Roche provide new details of how the activation of these proteins takes place. The findings can be transferred to other processes, such as smell, taste and many more where similar proteins are involved in the signal transmission. Moreover, they could help to develop novel, improved drugs.

Nobel Prize-winning research

Thanks to decades of research scientists have learnt a great deal about the interplay between G-proteins and the corresponding receptors (G-protein-coupled receptors or GPCRs for short). In 1994 and 2012, for instance, Nobel Prizes were awarded for the discovery of these receptors and the clarification of their coupling mechanism with the G-proteins. The details of how the G-protein is activated, however, were not clear until now. The new study plugs this gap, revealing how the shape of G-proteins is altered during their activation and which protein components are behind these changes.

A few components set the tone

Like all proteins, G-proteins are made up of building blocks which experts refer to as amino acids. In proteins, these amino acids are linked to each other in a particular sequence according to a precise blueprint encoded in our DNA. The G-protein studied here is composed of 354 amino acids. In order to find out how this G-protein is activated, the authors of the study exchanged every single one of these 354 amino acids with another amino acid. They then measured how the exchange affected the degree of activation of the G-protein.

“The analysis of the measurements reveals that only one small group of around twenty amino acids plays a major role in activating the G-protein,” explains Dawei Sun, who conducted the experiments as part of his PhD dissertation at PSI. Sure enough, only exchanging these particular amino acids had a significant influence on the activation of the G-protein, while swapping the remaining amino acids produced no significant effect.

The researchers detected the influence of the essential amino acids in changes in the shape of a section of the G-protein, which resembled a rolled-out streamer (helix structure) in a deactivated state. “When the key amino acids were switched, this structure lacked its usual twists,” explains Dmitry Veprintsev, the leading researcher on the study at PSI’s Laboratory of Biomolecular Research. “This enabled us to demonstrate that the helix structure disappears at least temporarily during the activation of the G-protein,” adds Veprintsev.

Useful for almost one in three drugs

The significance of this result is not limited to one single protein: the newly discovered mechanism is universal. In other words, it is not only involved in the particular G-protein examined in this study, but rather in all G-proteins. This conclusion is supported by extensive computer calculations conducted by a team led by Madan Babu from the MRC Laboratory of Molecular Biology and recently published in the journal Nature.

Veprintsev stresses that the present study has identified the essential amino acids that play a role in the activation mechanism of a G-protein. Gebhard Schertler, the head of the Biology and Chemistry Research Department at PSI, explains that this knowledge significantly aids the development of drugs that function through the activation of a GPCR receptor and the corresponding G-protein. The potential benefit is not to be underestimated: today, around 30 per cent of all available drugs already unleash their effect in this way. Moreover, the consequences could go beyond the G-proteins. “Our method can be applied in future to other important proteins to understand their activation mechanism,” assures Veprintsev.

Text: Paul Scherrer Institute/Leonid Leiva

About PSI

The Paul Scherrer Institute PSI develops, builds and operates large, complex research facilities and makes them available to the national and international research community. The institute's own key research priorities are in the fields of matter and materials, energy and environment and human health. PSI is committed to the training of future generations. Therefore about one quarter of our staff are post-docs, post-graduates or apprentices. Altogether PSI employs 1900 people, thus being the largest research institute in Switzerland. The annual budget amounts to approximately CHF 350 million.

Dr Dmitry Veprintsev, Projektleiter, Laboratory of Biomolecular Research
Paul Scherrer Institute,
Telephone: +41 (0)56 310 5246

Dr Gregor Cicchetti
Scientific Relations Manager
Biology and Chemistry Research Department
Telephone: +41 (0)56 310 5382

Original publication

Probing Gαi1 protein activation at single–amino acid resolution
Dawei Sun, Tilman Flock, Xavier Deupi, Shoji Maeda, Milos Matkovic, Sandro Mendieta, Daniel Mayer, Roger Dawson, Gebhard F.X. Schertler, M. Madan Babu, Dmitry Veprintsev
Nature Structural & Molecular Biology, 10 August 2015

Weitere Informationen: Text of the press release with pictures Laboratory of Biomolecular Research at PSI

Dagmar Baroke | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>