Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New details of the transmission of stimuli in living organisms unveiled

11.08.2015

Researchers unveil new details of how cells in a living organism process stimuli. So-called G-proteins, which help conduct external stimuli that reach a cell into its interior, play a central role here. For the first time, the study shows which parts of the G-proteins are vital for their function. Researchers from the Paul Scherrer Institute PSI, ETH Zurich, the pharmaceutical company Roche and the British MRC Laboratory of Molecular Biology report their results in the journals Nature and Nature Structural and Molecular Biology.

When we see an object, the following essentially happens: the light emanating from the object hits our eye, whereupon nerve cells transmit a signal to the brain, which the brain interprets as an image of the object. The signal transmission is triggered by the protein rhodopsin, a so-called G-protein-couple receptor.


The study’s leading researcher Dmitry Veprintsev in one of PSI’s labs, where the G-proteins are prepared for the measurements.

Paul Scherrer Institute/Mahir Dzambegovic


Simplified depiction of the structure of the G-protein studied (in grey) and the receptor coupled to it. The spheres represent the amino acids that are crucial for the activation of the G-protein.

Dawei Sun

This protein in the retinal cells is activated as soon as light reaches the eye. Rhodopsin acts as a switch which, once flicked, transmits the signal to G-proteins inside the cell. These amplify the signal and relay it in the cell. Many pairs of G-protein-coupled receptors and G-proteins work in a similar way.

The adrenalin receptor in muscle cells, for instance, is activated when the body releases the hormone adrenalin in a stress situation. In this case, the corresponding G-protein relays the signal, which culminates in the tensing of the muscles.

A team headed by researchers from the Paul Scherrer Institute (PSI) and ETH Zurich together with the the British MRC Laboratory of Molecular Biology and the pharmaceutical company Roche provide new details of how the activation of these proteins takes place. The findings can be transferred to other processes, such as smell, taste and many more where similar proteins are involved in the signal transmission. Moreover, they could help to develop novel, improved drugs.

Nobel Prize-winning research

Thanks to decades of research scientists have learnt a great deal about the interplay between G-proteins and the corresponding receptors (G-protein-coupled receptors or GPCRs for short). In 1994 and 2012, for instance, Nobel Prizes were awarded for the discovery of these receptors and the clarification of their coupling mechanism with the G-proteins. The details of how the G-protein is activated, however, were not clear until now. The new study plugs this gap, revealing how the shape of G-proteins is altered during their activation and which protein components are behind these changes.

A few components set the tone

Like all proteins, G-proteins are made up of building blocks which experts refer to as amino acids. In proteins, these amino acids are linked to each other in a particular sequence according to a precise blueprint encoded in our DNA. The G-protein studied here is composed of 354 amino acids. In order to find out how this G-protein is activated, the authors of the study exchanged every single one of these 354 amino acids with another amino acid. They then measured how the exchange affected the degree of activation of the G-protein.

“The analysis of the measurements reveals that only one small group of around twenty amino acids plays a major role in activating the G-protein,” explains Dawei Sun, who conducted the experiments as part of his PhD dissertation at PSI. Sure enough, only exchanging these particular amino acids had a significant influence on the activation of the G-protein, while swapping the remaining amino acids produced no significant effect.

The researchers detected the influence of the essential amino acids in changes in the shape of a section of the G-protein, which resembled a rolled-out streamer (helix structure) in a deactivated state. “When the key amino acids were switched, this structure lacked its usual twists,” explains Dmitry Veprintsev, the leading researcher on the study at PSI’s Laboratory of Biomolecular Research. “This enabled us to demonstrate that the helix structure disappears at least temporarily during the activation of the G-protein,” adds Veprintsev.

Useful for almost one in three drugs

The significance of this result is not limited to one single protein: the newly discovered mechanism is universal. In other words, it is not only involved in the particular G-protein examined in this study, but rather in all G-proteins. This conclusion is supported by extensive computer calculations conducted by a team led by Madan Babu from the MRC Laboratory of Molecular Biology and recently published in the journal Nature.

Veprintsev stresses that the present study has identified the essential amino acids that play a role in the activation mechanism of a G-protein. Gebhard Schertler, the head of the Biology and Chemistry Research Department at PSI, explains that this knowledge significantly aids the development of drugs that function through the activation of a GPCR receptor and the corresponding G-protein. The potential benefit is not to be underestimated: today, around 30 per cent of all available drugs already unleash their effect in this way. Moreover, the consequences could go beyond the G-proteins. “Our method can be applied in future to other important proteins to understand their activation mechanism,” assures Veprintsev.

Text: Paul Scherrer Institute/Leonid Leiva

About PSI

The Paul Scherrer Institute PSI develops, builds and operates large, complex research facilities and makes them available to the national and international research community. The institute's own key research priorities are in the fields of matter and materials, energy and environment and human health. PSI is committed to the training of future generations. Therefore about one quarter of our staff are post-docs, post-graduates or apprentices. Altogether PSI employs 1900 people, thus being the largest research institute in Switzerland. The annual budget amounts to approximately CHF 350 million.

Contact:
Dr Dmitry Veprintsev, Projektleiter, Laboratory of Biomolecular Research
Paul Scherrer Institute,
Telephone: +41 (0)56 310 5246
E-Mail: dmitry.veprintsev@psi.ch

Dr Gregor Cicchetti
Scientific Relations Manager
Biology and Chemistry Research Department
Telephone: +41 (0)56 310 5382
E-Mail: gregor.cicchetti@psi.ch

Original publication

Probing Gαi1 protein activation at single–amino acid resolution
Dawei Sun, Tilman Flock, Xavier Deupi, Shoji Maeda, Milos Matkovic, Sandro Mendieta, Daniel Mayer, Roger Dawson, Gebhard F.X. Schertler, M. Madan Babu, Dmitry Veprintsev
Nature Structural & Molecular Biology, 10 August 2015
http://nature.com/articles/doi:10.1038/nsmb.3070

Weitere Informationen:

http://psi.ch/8ZA5 Text of the press release with pictures
http://www.psi.ch/lbr Laboratory of Biomolecular Research at PSI

Dagmar Baroke | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>