Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New details of the transmission of stimuli in living organisms unveiled

11.08.2015

Researchers unveil new details of how cells in a living organism process stimuli. So-called G-proteins, which help conduct external stimuli that reach a cell into its interior, play a central role here. For the first time, the study shows which parts of the G-proteins are vital for their function. Researchers from the Paul Scherrer Institute PSI, ETH Zurich, the pharmaceutical company Roche and the British MRC Laboratory of Molecular Biology report their results in the journals Nature and Nature Structural and Molecular Biology.

When we see an object, the following essentially happens: the light emanating from the object hits our eye, whereupon nerve cells transmit a signal to the brain, which the brain interprets as an image of the object. The signal transmission is triggered by the protein rhodopsin, a so-called G-protein-couple receptor.


The study’s leading researcher Dmitry Veprintsev in one of PSI’s labs, where the G-proteins are prepared for the measurements.

Paul Scherrer Institute/Mahir Dzambegovic


Simplified depiction of the structure of the G-protein studied (in grey) and the receptor coupled to it. The spheres represent the amino acids that are crucial for the activation of the G-protein.

Dawei Sun

This protein in the retinal cells is activated as soon as light reaches the eye. Rhodopsin acts as a switch which, once flicked, transmits the signal to G-proteins inside the cell. These amplify the signal and relay it in the cell. Many pairs of G-protein-coupled receptors and G-proteins work in a similar way.

The adrenalin receptor in muscle cells, for instance, is activated when the body releases the hormone adrenalin in a stress situation. In this case, the corresponding G-protein relays the signal, which culminates in the tensing of the muscles.

A team headed by researchers from the Paul Scherrer Institute (PSI) and ETH Zurich together with the the British MRC Laboratory of Molecular Biology and the pharmaceutical company Roche provide new details of how the activation of these proteins takes place. The findings can be transferred to other processes, such as smell, taste and many more where similar proteins are involved in the signal transmission. Moreover, they could help to develop novel, improved drugs.

Nobel Prize-winning research

Thanks to decades of research scientists have learnt a great deal about the interplay between G-proteins and the corresponding receptors (G-protein-coupled receptors or GPCRs for short). In 1994 and 2012, for instance, Nobel Prizes were awarded for the discovery of these receptors and the clarification of their coupling mechanism with the G-proteins. The details of how the G-protein is activated, however, were not clear until now. The new study plugs this gap, revealing how the shape of G-proteins is altered during their activation and which protein components are behind these changes.

A few components set the tone

Like all proteins, G-proteins are made up of building blocks which experts refer to as amino acids. In proteins, these amino acids are linked to each other in a particular sequence according to a precise blueprint encoded in our DNA. The G-protein studied here is composed of 354 amino acids. In order to find out how this G-protein is activated, the authors of the study exchanged every single one of these 354 amino acids with another amino acid. They then measured how the exchange affected the degree of activation of the G-protein.

“The analysis of the measurements reveals that only one small group of around twenty amino acids plays a major role in activating the G-protein,” explains Dawei Sun, who conducted the experiments as part of his PhD dissertation at PSI. Sure enough, only exchanging these particular amino acids had a significant influence on the activation of the G-protein, while swapping the remaining amino acids produced no significant effect.

The researchers detected the influence of the essential amino acids in changes in the shape of a section of the G-protein, which resembled a rolled-out streamer (helix structure) in a deactivated state. “When the key amino acids were switched, this structure lacked its usual twists,” explains Dmitry Veprintsev, the leading researcher on the study at PSI’s Laboratory of Biomolecular Research. “This enabled us to demonstrate that the helix structure disappears at least temporarily during the activation of the G-protein,” adds Veprintsev.

Useful for almost one in three drugs

The significance of this result is not limited to one single protein: the newly discovered mechanism is universal. In other words, it is not only involved in the particular G-protein examined in this study, but rather in all G-proteins. This conclusion is supported by extensive computer calculations conducted by a team led by Madan Babu from the MRC Laboratory of Molecular Biology and recently published in the journal Nature.

Veprintsev stresses that the present study has identified the essential amino acids that play a role in the activation mechanism of a G-protein. Gebhard Schertler, the head of the Biology and Chemistry Research Department at PSI, explains that this knowledge significantly aids the development of drugs that function through the activation of a GPCR receptor and the corresponding G-protein. The potential benefit is not to be underestimated: today, around 30 per cent of all available drugs already unleash their effect in this way. Moreover, the consequences could go beyond the G-proteins. “Our method can be applied in future to other important proteins to understand their activation mechanism,” assures Veprintsev.

Text: Paul Scherrer Institute/Leonid Leiva

About PSI

The Paul Scherrer Institute PSI develops, builds and operates large, complex research facilities and makes them available to the national and international research community. The institute's own key research priorities are in the fields of matter and materials, energy and environment and human health. PSI is committed to the training of future generations. Therefore about one quarter of our staff are post-docs, post-graduates or apprentices. Altogether PSI employs 1900 people, thus being the largest research institute in Switzerland. The annual budget amounts to approximately CHF 350 million.

Contact:
Dr Dmitry Veprintsev, Projektleiter, Laboratory of Biomolecular Research
Paul Scherrer Institute,
Telephone: +41 (0)56 310 5246
E-Mail: dmitry.veprintsev@psi.ch

Dr Gregor Cicchetti
Scientific Relations Manager
Biology and Chemistry Research Department
Telephone: +41 (0)56 310 5382
E-Mail: gregor.cicchetti@psi.ch

Original publication

Probing Gαi1 protein activation at single–amino acid resolution
Dawei Sun, Tilman Flock, Xavier Deupi, Shoji Maeda, Milos Matkovic, Sandro Mendieta, Daniel Mayer, Roger Dawson, Gebhard F.X. Schertler, M. Madan Babu, Dmitry Veprintsev
Nature Structural & Molecular Biology, 10 August 2015
http://nature.com/articles/doi:10.1038/nsmb.3070

Weitere Informationen:

http://psi.ch/8ZA5 Text of the press release with pictures
http://www.psi.ch/lbr Laboratory of Biomolecular Research at PSI

Dagmar Baroke | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>