Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer drug to begin trials in multiple myeloma patients

14.10.2014

Scientists at Imperial College London have developed a new cancer drug which they plan to trial in multiple myeloma patients by the end of next year.

In a paper published today in the journal Cancer Cell, the researchers report how the drug, known as DTP3, kills myeloma cells in laboratory tests in human cells and mice, without causing any toxic side effects, which is the main problem with most other cancer drugs. The new drug works by stopping a key process that allows cancer cells to multiply.

The team have been awarded Biomedical Catalyst funding from the Medical Research Council (MRC) to take the drug into a clinical trial in multiple myeloma patients, scheduled to begin in late 2015.

Multiple myeloma is an incurable cancer of the bone marrow, which accounts for nearly two per cent of all cancer deaths.

Professor Guido Franzoso, from the Department of Medicine at Imperial College London, who led the research, said: "Lab studies suggest that DTP3 could have therapeutic benefit for patients with multiple myeloma and potentially several other types of cancer, but we will need to confirm this in our clinical trials, the first of which will start next year."

The new drug was developed by studying the mechanisms that enable cancer cells to outlive their normal lifespan and carry on multiplying. In the 1990s, a protein called nuclear factor kappa B (NF-kB), which plays an important role in inflammation, and the immune and stress response systems, was discovered to be overactive in many types of cancer, and responsible for switching off the normal cellular mechanisms that naturally lead to cell death. This enables the cancer cells to survive.

The pharmaceutical industry and scientists around the world have invested heavily in research into NF-kB inhibitors, but such compounds have not been successfully developed as therapies because they also block the many important processes controlled by NF-kB in healthy cells, causing serious toxic side effects.

The Imperial researchers took a different approach, looking for target genes downstream of NF-kB that might be responsible for its role in cancer specifically.

By studying cells from multiple myeloma patients, they identified a protein complex, named GADD45β/MKK7, that appeared to play a critical role in allowing the cancer cells to survive.

Searching for a safe way to target the NF-kB pathway, they screened over 20,000 molecules and found two that disrupted the protein complex. Further refinements led to the experimental drug, DTP3, which tests showed kills cancer cells very effectively but appears to have no toxicity to normal cells at the doses that eradicate the tumours in mice.

"We had known for many years that NF-kB is very important for cancer cells, but because it is also needed by healthy cells, we did not know how to block it specifically. The discovery that blocking the GADD45β/MKK7 segment of the NF-kB pathway with our DTP3 peptide therapeutic selectively kills myeloma cells could offer a completely new approach to treating patients with certain cancers, such as multiple myeloma," Professor Franzoso said.

A spinout company, Kesios Therapeutics, was formed to commercialise DTP3 and other drug candidates based on Professor Franzoso's research, with support from Imperial Innovations, a technology commercialisation company focused on developing the most promising UK academic research.

"The significant progress made by Professor Franzoso in multiple myeloma is one of the many cancers we believe his signal transduction research could be applied to. To help develop this ground-breaking research further, Imperial Innovations created the spin out Kesios Therapeutics," explained Dayle Hogg from the Healthcare Ventures team at Imperial Innovations.

###

This research has been funded by the MRC, the US National Institutes of Health, and Cancer Research UK.

For more information please contact:

Sam Wong
Research Media Officer
Imperial College London
Email: sam.wong@imperial.ac.uk
Tel: +44(0)20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248

Notes to editors:

1. L. Tornatore et al. 'Cancer-selective targeting of the NF-κB survival pathway with GADD45β/MKK7 inhibitors.' Cancer Cell, 13 October 2014.

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

http://www.imperial.ac.uk

3. About DTP3 and the Cancer Cell Publication Data

DTP3, a D-tripeptide, specifically disrupts the GADD45β/MKK7 complex found within a discrete loop of the NF-kB pathway, and in so doing, kills multiple myeloma cells from patients, without toxicity to normal cells. In human cell models, DTP3 was found to have a similar anti-cancer potency to that of the clinical standard, bortezomib, but with a more than 100-fold higher cancer-cell specificity, and interestingly retained full therapeutic efficacy in cell lines that were resistant to standard multiple myeloma treatments. Crucially, in mice, DTP3 was found to eradicate myeloma tumors, with no apparent side-effects at the effective doses.

4. About Imperial Innovations

Imperial Innovations creates, builds and invests in pioneering technologies developed from the academic research of the UK's four leading Universities. The Group supports scientists and entrepreneurs in the commercialisation of their ideas and intellectual property by leading the formation of new companies, providing facilities in the early stages, providing investment and encouraging co-investment to accelerate development, providing operational expertise and recruiting high-calibre management teams. It also runs an Incubator in London that is the initial home for many of its technology spin-outs.

Originally formed as the Technology Transfer office for Imperial College - a role it still carries out today, Innovations also invests in opportunities arising from intellectual property developed at, or associated with, Cambridge University, Oxford University and University College London. These are the top four research intensive universities in Europe with a research income of over £1.3 billion per annum.

Innovations invests in the most promising opportunities from whichever technology sector they arise, but has built particular expertise in the key sectors of: therapeutics, medtech, engineering and materials, and ICT.

During the period from the admission of its shares to trading on AIM in 2006 to 31 January 2014, Innovations has invested a total of £160.9 million across its portfolio companies, which have raised collectively investment of over £750.0 million.

5. The Biomedical Catalyst is a funding programme run jointly by the Medical Research Council and Innovate UK (formerly the Technology Strategy Board). It provides early translational funding to UK academics and SMEs to help bridge the gap between discovery science and commercialisation of new treatments and technologies. http://www.mrc.ac.uk/funding/science-areas/translation/biomedical-catalyst/

Sam Wong | Eurek Alert!

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>