Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to targeted cancer therapy

03.07.2015

Despite many advances in medicine, cancer remains the most common cause of death in Germany and the Western World. The further development of diagnostic tests and treatment is not only essential for individual patients, but also represents an enormous challenge to our public health care system. Scientists in Cologne led by Prof. Christian Reinhardt have identified a new approach to targeted cancer therapy.

Through the molecular characterization of tumor cells, Prof. Christian Reinhardt and his team of scientists at the University of Cologne and CECAD have developed a new approach to treating cancer.

“These new findings offer a novel molecular approach to treating genetically-defined cancers more effectively in the future,” says Prof. Reinhardt, lead scientist of this new study, of the recent research success. An international team of scientists from Germany, Denmark and England was involved in the study, which has been published today in the high impact journal Cell.

In the Department of Internal Medicine I at the University of Cologne, Prof. Reinhardt leads a research group that is substantially sponsored by the German Research Foundation (DFG), teh German Cancer Aid, and the Volkswagen Foundation.

With the aid of a new screening procedure, the research team has tested the efficacy of various compounds and, in particular, of novel compound combinations. Analytical results showed that tumor cells and cancers with a mutation in the KRAS gene depend on two distinct enzymes (Chk1 and MK2). The KRAS gene is one of the most commonly mutated genes appearing in human cancer cells.

Mutated KRAS is found in almost all pancreatic cancers, and about one-third of lung and colorectal cancers. Detailed analyses showed that KRAS mutations lead to massively increased cell growth. But the very rapid proliferation of cancer cells causes problems: DNA duplication that has to take place prior to every cell division is much more difficult for cancer cells under conditions of accelerated growth.

The latest data from the Cologne scientists show that KRAS-mutated cancer cells rely on MK2 and Chk1 enzyme function for error-free duplication of their DNA. This dependence on MK2 and Chk1 distinguishes KRAS-mutant cancer cells from healthy tissue, which is capable of duplicating DNA without these particular enzymatic functions.

And the new therapeutic approach is based on this very difference between cancer cells and normal tissue. The research team has shown that tumor cells and cancers with KRAS mutations respond very well to combination therapy with Chk1 and MK2 inhibitors. Normal tissue, on the other hand, tolerates the combination therapy well and has very little in the way of adverse reactions.

Taking a closer look at these enzymes, Chk1 and MK2 are protein kinases. In the last 10 years, this particular enzyme group has increasingly come to the attention of the big pharmaceutical companies. Enzymes can potentially be inhibited and therefore provide options for developing new therapeutic agents.

The combined pharmacological inhibition of Chk1 and MK2 is a therapeutic strategy that could be used specifically for treating KRAS-mutated cancers. “Chk1/MK2 inhibition works specifically in KRAS-mutant cancer cells. Normal tissue isn’t really affected, because healthy cells don’t contain KRAS genes that have undergone mutation,” explains Dr. Felix Dietlein, lead author of the publication, when describing the therapeutic concept.

Prof. Michael Hallek, Head of the Department of Internal Medicine I at the University of Cologne, finds the new therapeutic approach very promising. “MK2 is a protein kinase that has been investigated in depth for some time, as its function seems to have a role in the development of rheumatoid disease.

The protein kinase Chk1 has also been closely scrutinized in recent years, and the first clinical trials of various Chk1 inhibitors are now underway. These fascinating findings may provide treating physicians with an effective new tool for treating KRAS-mutant cancers in the near future,” he confirms.

Even though they have been the subject of research and development as medicinal products for some time, none of the MK2 inhibitors has yet obtained regulatory approval. Work on this project was generously sponsored by the German Research Foundation (DFG), German Cancer Aid, and the Volkswagen Foundation.

For CECAD and the University Hospital Cologne, the development of this new therapeutic approach represents a significant and promising opportunity: additional treatment options for the fight against cancer in the near future – an important aspect of aging research at the Cluster of Excellence.

Contacts:
Prof. Christian Reinhardt
CECAD, University of Cologne
Department of Internal Medicine I
Cologne University Hospital
Phone +49 221 478-96701
christian.reinhardt@uk-koeln.de

Astrid Bergmeister MBA
Head of CECAD PR & Marketing
University of Cologne
Phone + 49 (0) 221-478 84043
astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://www.cecad@uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>