Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New approach to targeted cancer therapy


Despite many advances in medicine, cancer remains the most common cause of death in Germany and the Western World. The further development of diagnostic tests and treatment is not only essential for individual patients, but also represents an enormous challenge to our public health care system. Scientists in Cologne led by Prof. Christian Reinhardt have identified a new approach to targeted cancer therapy.

Through the molecular characterization of tumor cells, Prof. Christian Reinhardt and his team of scientists at the University of Cologne and CECAD have developed a new approach to treating cancer.

“These new findings offer a novel molecular approach to treating genetically-defined cancers more effectively in the future,” says Prof. Reinhardt, lead scientist of this new study, of the recent research success. An international team of scientists from Germany, Denmark and England was involved in the study, which has been published today in the high impact journal Cell.

In the Department of Internal Medicine I at the University of Cologne, Prof. Reinhardt leads a research group that is substantially sponsored by the German Research Foundation (DFG), teh German Cancer Aid, and the Volkswagen Foundation.

With the aid of a new screening procedure, the research team has tested the efficacy of various compounds and, in particular, of novel compound combinations. Analytical results showed that tumor cells and cancers with a mutation in the KRAS gene depend on two distinct enzymes (Chk1 and MK2). The KRAS gene is one of the most commonly mutated genes appearing in human cancer cells.

Mutated KRAS is found in almost all pancreatic cancers, and about one-third of lung and colorectal cancers. Detailed analyses showed that KRAS mutations lead to massively increased cell growth. But the very rapid proliferation of cancer cells causes problems: DNA duplication that has to take place prior to every cell division is much more difficult for cancer cells under conditions of accelerated growth.

The latest data from the Cologne scientists show that KRAS-mutated cancer cells rely on MK2 and Chk1 enzyme function for error-free duplication of their DNA. This dependence on MK2 and Chk1 distinguishes KRAS-mutant cancer cells from healthy tissue, which is capable of duplicating DNA without these particular enzymatic functions.

And the new therapeutic approach is based on this very difference between cancer cells and normal tissue. The research team has shown that tumor cells and cancers with KRAS mutations respond very well to combination therapy with Chk1 and MK2 inhibitors. Normal tissue, on the other hand, tolerates the combination therapy well and has very little in the way of adverse reactions.

Taking a closer look at these enzymes, Chk1 and MK2 are protein kinases. In the last 10 years, this particular enzyme group has increasingly come to the attention of the big pharmaceutical companies. Enzymes can potentially be inhibited and therefore provide options for developing new therapeutic agents.

The combined pharmacological inhibition of Chk1 and MK2 is a therapeutic strategy that could be used specifically for treating KRAS-mutated cancers. “Chk1/MK2 inhibition works specifically in KRAS-mutant cancer cells. Normal tissue isn’t really affected, because healthy cells don’t contain KRAS genes that have undergone mutation,” explains Dr. Felix Dietlein, lead author of the publication, when describing the therapeutic concept.

Prof. Michael Hallek, Head of the Department of Internal Medicine I at the University of Cologne, finds the new therapeutic approach very promising. “MK2 is a protein kinase that has been investigated in depth for some time, as its function seems to have a role in the development of rheumatoid disease.

The protein kinase Chk1 has also been closely scrutinized in recent years, and the first clinical trials of various Chk1 inhibitors are now underway. These fascinating findings may provide treating physicians with an effective new tool for treating KRAS-mutant cancers in the near future,” he confirms.

Even though they have been the subject of research and development as medicinal products for some time, none of the MK2 inhibitors has yet obtained regulatory approval. Work on this project was generously sponsored by the German Research Foundation (DFG), German Cancer Aid, and the Volkswagen Foundation.

For CECAD and the University Hospital Cologne, the development of this new therapeutic approach represents a significant and promising opportunity: additional treatment options for the fight against cancer in the near future – an important aspect of aging research at the Cluster of Excellence.

Prof. Christian Reinhardt
CECAD, University of Cologne
Department of Internal Medicine I
Cologne University Hospital
Phone +49 221 478-96701

Astrid Bergmeister MBA
Head of CECAD PR & Marketing
University of Cologne
Phone + 49 (0) 221-478 84043

Weitere Informationen:

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>