Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New approach to fight tuberculosis


Researchers from Würzburg and Stony Brook have found a new weak spot in the bacterium that causes tuberculosis: Blocking a specific enzyme involved in the cholesterol catabolism could disable the bacteria.

In 2012, there were around 8.6 million cases of tuberculosis worldwide resulting in 1.3 million associated deaths according to the World Health Organisation WHO. About five percent of infections were caused by multidrug-resistant pathogens, a trend that is on the rise.

Interaction of the steroid (yellow) with the FadA5 enzyme of the tuberculosis bacillus. The steroid is a good basis for developing a new inhibiting drug.

(Image: Caroline Kisker)

Scientists are therefore seeking new effective ways to tackle the tuberculosis bacteria in the future. Professor Caroline Kisker and her team have devoted their research to this topic: At the University of Würzburg’s Rudolf-Virchow-Center for Experimental Biomedicine, they are studying the bacterial enzymes to pinpoint new vulnerable points.

Enzyme-steroid interaction opens up new prospects

The Würzburg researchers are looking into the pathogens' cholesterol metabolism among others. The enzyme FadA5 is of major interest in this context as it is needed by the bacillus to keep up chronic infection. Teaming up with researchers of Stony Brook University (US), Kisker and her team have now analysed the exact structure of the enzyme – and identified a potential new target for drugs.

"We inserted a steroid molecule into the enzyme's active centre and analysed the resulting structure," the Würzburg professor explains. This finding helps to design molecules that fit exactly into the active centre and block it with the aim to completely disable the enzyme FadA5, as the research group reports in the January issue of "Structure" journal.

Drug specifically targets the bacterium

A potential problem, however, is that the human organism uses enzymes which are similar to the FadA5 from the tuberculosis bacilli. Hence, it is conceivable that a new drug not only affects the bacteria, but harms the human body as well.

Therefore, Kisker's team analysed the human enzymes, too. The result was promising: "Comparing the structures showed that it should be possible to block the bacterial enzyme specifically," the professor further. Thus, an inhibiting drug should only harm the bacteria but not the human enzymes.

"The steroid is a solid basis for us to develop new inhibiting drugs," Kisker says. To pursue this goal, she has teamed up with other work groups, including that of Professor Christoph Sotriffer of the Würzburg Pharmaceutical Chemistry Department. Their aim is to find a drug that specifically inhibits the FadA5 enzyme of the tuberculosis pathogens.

Schaefer et al.: "FadA5 a thiolase from Mycobacterium tuberculosis – a unique steroid-binding pocket reveals the potential for drug development against tuberculosis", Structure, published online, 2014, December 4, DOI:


Prof. Dr. Caroline Kisker, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Phone +49 931 31-80381,

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>