Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antibiotic in mushroom that grows on horse dung

10.11.2014

Researchers from the Institute of Microbiology at ETH Zurich have discovered a new protein with antibiotic properties in a mushroom that grows on horse dung. Researchers are now exploring the various potential applications.

Microbiologists and molecular biologists at ETH Zurich and the University of Bonn have discovered a new agent in fungi that kills bacteria. The substance, known as copsin, has the same effect as traditional antibiotics, but belongs to a different class of biochemical substances. Copsin is a protein, whereas traditional antibiotics are often non-protein organic compounds.


The scientists isolated the new active compound from the grey shag that grows on horse dung. (Photo: Andreas Gminder / mushroomobserver.org / CC BY-NC-SA 3)


The three-dimensional structure studied by ETH researchers exhibits the compact form of copsin. (Source: Essig A et al. JBC 2014)

The researchers led by Markus Aebi, Professor of Mycology, discovered the substance in the common inky cap mushroom Coprinopsis cinerea that grows on horse dung. When they began their research, the scientists were interested in understanding how this fungus and various bacteria affect each other's growth.

This involved cultivating the fungus in a laboratory along with several different types of bacteria. It was found that C. cinerea is able to kill certain bacteria. Further research demonstrated that the copsin produced by the mushroom is responsible for this antibiotic effect.

Copsin belongs to the group of defensins, a class of small proteins produced by many organisms to combat microorganisms that cause disease. The human body also produces defensins to protect itself against infections. They have been found, for example, on the skin and in the mucous membranes.

A question for basic research

For Aebi, the main focus of this research project was not primarily on applications for the new substance. “Whether copsin will one day be used as an antibiotic in medicine remains to be seen. This is by no means certain, but it cannot be ruled out either,” he says.

The ETH professor is much more intrigued by fundamental questions, such as how fungi have used defensins and other naturally antibiotic substances for millions of years to protect themselves against bacteria. Why does this work for fungi while humans have been using antibiotics in medicine for just 70 years with many of them already becoming useless due to resistance?

“Fungi have internal instructions on how to use these substances without resulting in selection of resistant bacteria. How to decode these instructions is an intriguing problem for basic research,” explains Aebi.

An extremely stable protein

Andreas Essig, a postdoc in Aebi's group and lead author of the study, is currently exploring potential applications for copsin that has been registered for patent approval. It was the biochemical properties of the substance that led the scientist to do so. “Copsin is an exceptionally stable protein,” says Essig.

Proteins are generally susceptible to protein-degrading enzymes and high temperatures. Copsin is an exception because it also remains stable when heated to a temperature of 100 degrees Celsius for several hours or when subjected to protein-degrading enzymes. The researchers believe that the protein has these properties because of its extremely compact three-dimensional structure, as NMR spectroscopy has shown.

The ETH researchers were also able to unravel the exact mechanism of action, discovering that copsin can bind to lipid II, an essential building block for the cell wall of bacteria. “Building the cell wall is the Achilles heel of bacteria,” explains Essig. If copsin binds to lipid II, the bacteria die because they are unable to build new cell wall.

In addition to being used as an antibiotic in medicine, it may also be possible to use copsin in the food industry as well. This is because copsin kills many pathogens including Listeria, a type of bacteria that can cause severe food poisoning and is therefore feared, especially in the production of non-heat treated foodstuffs such as raw milk cheeses and dried meats.

Literature reference
Essig A, Hofmann D, Münch D, Gayathri S, Künzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M: Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. Journal of Biological Chemistry, online publication 23 October 2014, doi: 10.1074/jbc.M114.599878

News & Media Relations | EurekAlert!
Further information:
https://www.ethz.ch/en/news-and-events/eth-news/news/2014/11/new-antibiotic-in-mushroom-that-grows-on-horse-dung.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>