Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron beams reveal how antibodies cluster in solution

20.05.2014

Results from neutron spin-echo analysis at the Institut Laue-Langevin (ILL) and the National Center of Neutron Research (NCNR) in the United States are an important advance towards enabling subcutaneous injections of concentrated biopharmaceuticals used to treat cancer and autoimmune disorders (e.g. arthritis, multiple sclerosis). The insights obtained could help drug companies reduce the viscosity and mitigate phase separation in injectable biopharmaceuticals, making them easier to manufacture and fluid enough to be self-administered in the home.

Scientists have used small-angle neutron scattering (SANS) and neutron spin-echo (NSE) techniques for the first time to understand how monoclonal antibodies (mAbs), a class of targeted biopharmaceuticals used to treat autoimmune disorders and cancer, dynamically cluster and move in high concentration solutions. Certain mAb cluster arrangements can thicken pharmaceutical solutions; they could thus limit the feasible concentration of injectables administered to patients around the world.


© psdesign1 - Fotolia.com

The insights provided by a team of neutron scientists from the National Center of Neutron Research (NCNR) and the Institut Laue-Langevin (ILL), in collaboration with colloid and proteins scientists at the University of Delaware and biopharmaceutical company Genentech (a member of the Roche group), are an important step towards the development and manufacture of high-concentration biopharmaceuticals needed for high-dose indications and potential self-administration at home.

Monoclonal antibodies (mAbs) are proving to be a vital tool in modern pharmacology, providing the basis for a growing number of successful drugs for cancer and autoimmune disorders such as arthritis and multiple sclerosis.  As agents for targeted therapy with a good safety profile, they are an alternative to harsher chemotherapy treatment.

The mAbs work by attaching themselves to specific protein targets on cancerous cells, or blocking target proteins in a known biochemical pathway responsible for a disease.  These treatments usually require high doses, and lately in some indications there has been considerable interest in moving from intravenous (IV) delivery to a more convenient subcutaneous (SC) delivery - a shallow injection into the cutis just below the skin (such as the home treatments offered to sufferers of type 1 diabetes). 

However, progress has been hampered by the high viscosity of solutions containing high amounts of mAbs, and this provides challenges to efficient and economical large-scale production, purification, and delivery of these drugs.

"For some proteins at concentrations higher than 100 mg/ml, you can’t deliver them fast enough through thin, SC injection needles, so repeat visits to the hospital with intravenous drips are needed," explains Prof. Yun Liu from the National Center of Neutron Research (NCNR) in the US, who is also affiliated with the University of Delaware. "The thickening may also cause problems in processing, when filtration pressures are too high, for example, or during freeze and thaw in large tanks where potential gelation or phase separation of the freeze concentrate can occur." 

As a result, efforts to find ways to raise the concentration of monoclonal antibody pharmaceuticals are focused on understanding the root cause of this thickening. Previous studies using static light scattering (Lilyestrom et al, 2013) on concentrated mAb solutions had suggested a strong link between the development of protein clustering formations and increases in viscosity.

In this latest study (Yearley et al. 2014)  led by Prof. Yun Liu (NCNR) and Dr. Dan Zarraga from Genentech, in collaboration with the Institut Laue-Langevin (ILL) in Grenoble, small-angle neutron scattering (SANS) and neutron spin-echo (NSE) techniques were used to study the structure and dynamics of mAb clustering responsible for the bulk solution properties. Two types of antibody were placed in solution - one known to increase solution viscosity and one which did not - so any differences in behaviour could be observed. 

Neutron spin-echo (NSE) measures cluster dynamics by determining their self diffusivity (as opposed to collective diffusivity measured in dynamic light scattering).  Neutrons are able to probe very high concentrations since they are scattered only by nuclei (these occupy very little space and thus appear dilute in the neutron beam’s perspective).  Also the unrivalled high resolution and very high neutron intensity provided by the ILL neutron spin-echo instrument IN15 allowed a systematic exploration of many different mAb samples.

Using this technique for the high viscosity mAb solution the team confirmed the presence of small extended clusters of mAbs with lifetimes sufficiently long to have an impact on bulk solution properties.  On the other hand, the diffusivity measured for the low viscosity mAb solution indicated no such clustering at timescales greater than 50 nanoseconds.  The two mAbs only differed in the sequence of their complementarity determining region (CDR); this shows that seemingly small changes in the sequence can have profound consequences on mAb solution behaviour.

Taking into account these insights on mAb clustering, recent studies (Zarraga et al 2013; Allmendinger et al 2014) have shown that there is a window of expulsion rates through a thin needle that reversibly disrupts these mAb clusters, helping mitigate the viscosity issue without irreversibly damaging the individual mAbs.  This provides a basis for designing an optimal device system for delivering biopharmaceutical injectable solutions at very high concentrations.

The progress made in these studies is due in part to bringing research institutions and industry together to address practical problems.  Research institutions in academe and national labs are often in search of applications for their technological solutions, whilst industry encounters practical problems when looking for solutions.  In addition, such collaboration can spur research in adjacent, often very important, fields.

Dr Peter Falus, instrument scientist at ILL said: "Whilst the potential impact of these studies on drug design is very exciting, the subject of protein clustering is an extremely interesting area in its own right. A lot of well-known phenomena, such as the cataracts in our eyes, or Alzheimer’s disease, are the results of proteins clustering in our bodies. As a physicist, I am interested in clustering in general, and neutron techniques here at the ILL provide a unique, high-resolution tool to investigate these complex interactions in natural organic systems."

For more information please contact James Romero  / Tel: +44 08456801866

References


1. Observation of Small Cluster Formation in Concentrated Monoclonal Antibody Solutions and Its Implications to Solution Viscosity, Yearley E et al, Biophys J 1763-1770 (15.04.2014)

2. Small Angle Neutron Scattering of mAb Conformations and Interactions at High Concentration, Yearley E et al, Biophys J 105:720-731 (2013).
3. Monoclonal antibody self-association, cluster formation, and rheology at high concentrations, Lilyestrom et al, J Phys Chem B 117:6373-84 (2013).
4. High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies, Zarraga IE, Taing R, et al , J Pharm Sci  102: 2538–2549 (2013).
5. Rheological characterization and injection forces of concentrated protein formulations: An alternative predictive model for non-Newtonian solutions, Allmendinger A, et al Eur J Pharm Biopharm pii: S0939-6411 (Feb 18 2014)

Notes to editors

 

About ILL – The Institut Laue-Langevin (ILL) is an international research centre based in Grenoble, France. It has led the world in neutron-scattering science and technology for more than 40 years, since experiments began in 1972. ILL operates one of the most intense neutron sources in the world, feeding beams of neutrons to a suite of 40 high-performance instruments that are constantly upgraded. Each year 1,200 scientists from more than 30 countries worldwide visit ILL (2000 visits), to conduct research into condensed matter physics, (green) chemistry, biology, nuclear physics, and materials science. The UK, along with France and Germany, is an Associate and major funder of the ILL.

James Romero | idw - Informationsdienst Wissenschaft
Further information:
http://www.ill.eu/news-events/press-room/press-releases/neutron-beams-reveal-how-antibodies-cluster-in-solution-19052014/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>