Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron beams reveal how antibodies cluster in solution

20.05.2014

Results from neutron spin-echo analysis at the Institut Laue-Langevin (ILL) and the National Center of Neutron Research (NCNR) in the United States are an important advance towards enabling subcutaneous injections of concentrated biopharmaceuticals used to treat cancer and autoimmune disorders (e.g. arthritis, multiple sclerosis). The insights obtained could help drug companies reduce the viscosity and mitigate phase separation in injectable biopharmaceuticals, making them easier to manufacture and fluid enough to be self-administered in the home.

Scientists have used small-angle neutron scattering (SANS) and neutron spin-echo (NSE) techniques for the first time to understand how monoclonal antibodies (mAbs), a class of targeted biopharmaceuticals used to treat autoimmune disorders and cancer, dynamically cluster and move in high concentration solutions. Certain mAb cluster arrangements can thicken pharmaceutical solutions; they could thus limit the feasible concentration of injectables administered to patients around the world.


© psdesign1 - Fotolia.com

The insights provided by a team of neutron scientists from the National Center of Neutron Research (NCNR) and the Institut Laue-Langevin (ILL), in collaboration with colloid and proteins scientists at the University of Delaware and biopharmaceutical company Genentech (a member of the Roche group), are an important step towards the development and manufacture of high-concentration biopharmaceuticals needed for high-dose indications and potential self-administration at home.

Monoclonal antibodies (mAbs) are proving to be a vital tool in modern pharmacology, providing the basis for a growing number of successful drugs for cancer and autoimmune disorders such as arthritis and multiple sclerosis.  As agents for targeted therapy with a good safety profile, they are an alternative to harsher chemotherapy treatment.

The mAbs work by attaching themselves to specific protein targets on cancerous cells, or blocking target proteins in a known biochemical pathway responsible for a disease.  These treatments usually require high doses, and lately in some indications there has been considerable interest in moving from intravenous (IV) delivery to a more convenient subcutaneous (SC) delivery - a shallow injection into the cutis just below the skin (such as the home treatments offered to sufferers of type 1 diabetes). 

However, progress has been hampered by the high viscosity of solutions containing high amounts of mAbs, and this provides challenges to efficient and economical large-scale production, purification, and delivery of these drugs.

"For some proteins at concentrations higher than 100 mg/ml, you can’t deliver them fast enough through thin, SC injection needles, so repeat visits to the hospital with intravenous drips are needed," explains Prof. Yun Liu from the National Center of Neutron Research (NCNR) in the US, who is also affiliated with the University of Delaware. "The thickening may also cause problems in processing, when filtration pressures are too high, for example, or during freeze and thaw in large tanks where potential gelation or phase separation of the freeze concentrate can occur." 

As a result, efforts to find ways to raise the concentration of monoclonal antibody pharmaceuticals are focused on understanding the root cause of this thickening. Previous studies using static light scattering (Lilyestrom et al, 2013) on concentrated mAb solutions had suggested a strong link between the development of protein clustering formations and increases in viscosity.

In this latest study (Yearley et al. 2014)  led by Prof. Yun Liu (NCNR) and Dr. Dan Zarraga from Genentech, in collaboration with the Institut Laue-Langevin (ILL) in Grenoble, small-angle neutron scattering (SANS) and neutron spin-echo (NSE) techniques were used to study the structure and dynamics of mAb clustering responsible for the bulk solution properties. Two types of antibody were placed in solution - one known to increase solution viscosity and one which did not - so any differences in behaviour could be observed. 

Neutron spin-echo (NSE) measures cluster dynamics by determining their self diffusivity (as opposed to collective diffusivity measured in dynamic light scattering).  Neutrons are able to probe very high concentrations since they are scattered only by nuclei (these occupy very little space and thus appear dilute in the neutron beam’s perspective).  Also the unrivalled high resolution and very high neutron intensity provided by the ILL neutron spin-echo instrument IN15 allowed a systematic exploration of many different mAb samples.

Using this technique for the high viscosity mAb solution the team confirmed the presence of small extended clusters of mAbs with lifetimes sufficiently long to have an impact on bulk solution properties.  On the other hand, the diffusivity measured for the low viscosity mAb solution indicated no such clustering at timescales greater than 50 nanoseconds.  The two mAbs only differed in the sequence of their complementarity determining region (CDR); this shows that seemingly small changes in the sequence can have profound consequences on mAb solution behaviour.

Taking into account these insights on mAb clustering, recent studies (Zarraga et al 2013; Allmendinger et al 2014) have shown that there is a window of expulsion rates through a thin needle that reversibly disrupts these mAb clusters, helping mitigate the viscosity issue without irreversibly damaging the individual mAbs.  This provides a basis for designing an optimal device system for delivering biopharmaceutical injectable solutions at very high concentrations.

The progress made in these studies is due in part to bringing research institutions and industry together to address practical problems.  Research institutions in academe and national labs are often in search of applications for their technological solutions, whilst industry encounters practical problems when looking for solutions.  In addition, such collaboration can spur research in adjacent, often very important, fields.

Dr Peter Falus, instrument scientist at ILL said: "Whilst the potential impact of these studies on drug design is very exciting, the subject of protein clustering is an extremely interesting area in its own right. A lot of well-known phenomena, such as the cataracts in our eyes, or Alzheimer’s disease, are the results of proteins clustering in our bodies. As a physicist, I am interested in clustering in general, and neutron techniques here at the ILL provide a unique, high-resolution tool to investigate these complex interactions in natural organic systems."

For more information please contact James Romero  / Tel: +44 08456801866

References


1. Observation of Small Cluster Formation in Concentrated Monoclonal Antibody Solutions and Its Implications to Solution Viscosity, Yearley E et al, Biophys J 1763-1770 (15.04.2014)

2. Small Angle Neutron Scattering of mAb Conformations and Interactions at High Concentration, Yearley E et al, Biophys J 105:720-731 (2013).
3. Monoclonal antibody self-association, cluster formation, and rheology at high concentrations, Lilyestrom et al, J Phys Chem B 117:6373-84 (2013).
4. High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies, Zarraga IE, Taing R, et al , J Pharm Sci  102: 2538–2549 (2013).
5. Rheological characterization and injection forces of concentrated protein formulations: An alternative predictive model for non-Newtonian solutions, Allmendinger A, et al Eur J Pharm Biopharm pii: S0939-6411 (Feb 18 2014)

Notes to editors

 

About ILL – The Institut Laue-Langevin (ILL) is an international research centre based in Grenoble, France. It has led the world in neutron-scattering science and technology for more than 40 years, since experiments began in 1972. ILL operates one of the most intense neutron sources in the world, feeding beams of neutrons to a suite of 40 high-performance instruments that are constantly upgraded. Each year 1,200 scientists from more than 30 countries worldwide visit ILL (2000 visits), to conduct research into condensed matter physics, (green) chemistry, biology, nuclear physics, and materials science. The UK, along with France and Germany, is an Associate and major funder of the ILL.

James Romero | idw - Informationsdienst Wissenschaft
Further information:
http://www.ill.eu/news-events/press-room/press-releases/neutron-beams-reveal-how-antibodies-cluster-in-solution-19052014/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>