Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron analysis yields insight into bacteria for solar energy

24.03.2011
Structural studies of some of nature's most efficient light-harvesting systems are lighting the way for new generations of biologically inspired solar cell devices.

Researchers from Washington University in St. Louis and the Department of Energy's Oak Ridge National Laboratory used small-angle neutron scattering to analyze the structure of chlorosomes in green photosynthetic bacteria. Chlorosomes are efficient at collecting sunlight for conversion to energy, even in low-light and extreme environments.

"It's one of the most efficient light harvesting antenna complexes found in nature," said co-author and research scientist Volker Urban of ORNL's Center for Structural Molecular Biology, or CSMB.

Neutron analysis performed at the CSMB's Bio-SANS instrument at the High Flux Isotope Reactor allowed the team to examine chlorosome structure under a range of thermal and ionic conditions.

"We found that their structure changed very little under all these conditions, which shows them to be very stable," Urban said. "This is important for potential biohybrid applications – if you wanted to use them to harvest light in synthetic materials like a hybrid solar cell, for example."

The size, shape and organization of light-harvesting complexes such as chlorosomes are critical factors in electron transfer to semiconductor electrodes in solar devices. Understanding how chlorosomes function in nature could help scientists mimic the chlorosome's efficiency to create robust biohybrid or bio-inspired solar cells.

"What's so amazing about the chlorosome is that this large and complicated assembly is able to capture light effectively across a large area and then funnel the light to the reaction center without losing it along the way," Urban said. "Why this works so well in chlorosomes is not well understood at all."

"We're trying to find out general principles that are important for capturing, harvesting and transporting light efficiently and see how nature has solved that," Urban said.

Small-angle neutron scattering enabled the team to clearly observe the complicated biological systems at a nanoscale level without damaging the samples.

"With neutrons, you have an advantage that you get a very sharp contrast between these two phases, the chlorosome and the deuterated buffer. This gives you something like a clear black and white image," Urban said.

The team, led by Robert Blankenship of Washington University, published its findings in the journal Langmuir. The research was supported through the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by DOE's Office of Science. Both HFIR and the Bio-SANS facility at ORNL's Center for Structural Molecular Biology are also supported by DOE's Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Image: http://www.ornl.gov/info/press_releases/photos/chlorosome.jpeg

Caption: Chlorosomes (shown in green) capture and transfer light energy to the reaction center for photosynthesis in bacteria. New research from Oak Ridge National Laboratory reveals that the chlorosomes maintain their structure even under extreme conditions.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>