Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutralizing spurious associations

09.02.2009
Statistical analysis helps the search for fundamental causes of disease. Most Japanese people fall into one of two distinct groups genetically, biostatisticians from RIKEN’s Center for Genomic Medicine in Yokohama have shown.

The finding is significant because such population structure can bias genome-wide association studies (GWASs) aimed at determining genetic links to disease, leading to spurious associations. On the basis of their work the researchers suggest ways of avoiding or correcting this bias.

GWASs are increasingly employed to reveal relationships between single nucleotide polymorphisms (SNPs) and particular disease conditions. The technique seeks out statistical differences among sets of polymorphic genetic markers between sufferers of a disease and a control group.

It has already supplied useful information about the genetic basis of asthma, cancer, diabetes, heart disease and mental illness. GWASs, however, assume that the two groups being compared are drawn from the same homogeneous population—that is, there is no underlying pattern of genetic difference between them other than susceptibility to the disease condition being tested.

Although the population as a whole does not show great genetic diversity, previous work by other researchers suggested that the Japanese fall into two genetic categories, perhaps reflecting two migration events. But these studies were of limited regions of the genome. So the RIKEN researchers embarked on a much broader investigation with greater relevance to GWASs. They published their results in a recent issue of The American Journal of Human Genetics (1).

Given the good quality of SNP data on the Japanese population, the researchers used statistical techniques mainly based on principal components analysis to check the homogeneity of genetic structure in a sample of 7,003 people drawn from all over Japan. They found strong evidence of the dual nature of the Japanese population. One genetic group, the Hondo cluster, includes most people from the main islands of Japan; the other, the much smaller Ryukyu cluster, includes most individuals from Okinawa and nearby islands.

The research also demonstrated how such population stratification could impact the results of GWASs using Japanese subjects. As a consequence, the researchers propose measures to avoid bias, such as excluding members from the Ryukyu cluster if they occur in small proportion, equalizing Ryukyu numbers in both disease and control groups, or using statistical techniques to compensate for any potential bias.

“The aim of our analysis is to improve methods for conducting GWASs,” says first author Yumi Yamaguchi-Kabata. “We now wish to broaden the work to encompass different local regions in Asia.”

Reference

1. Yamaguchi-Kabata, Y., Nakazono, K., Takahashi, A., Saito, S., Hosono, N., Kubo, M., Nakamura, Y. & Kamatani, N. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: Effects on population-based association studies. The American Journal of Human Genetics 83, 445–456 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Statistical Analysis

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/633/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>