Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientists Unveil Molecular Pathway Involved with Huntington’s Disease

19.02.2010
MIT researchers have discovered new molecular changes in the brains of individuals with Huntington’s disease, a genetic disorder that leads to neuronal loss accompanied by unwanted movements, psychiatric symptoms, and eventual death. By studying brains of human patients, as well as mouse and rat models, they have uncovered a protective response that may eventually lead to new therapies for this currently incurable disease.

Huntington’s disease occurs in patients who inherit a mutant form of a protein called Huntingtin (Htt). The protein was first identified in 1993, but how it leads to disease is still poorly understood. One paradox is that the Htt protein is present throughout the body, yet the damage it causes is largely concentrated within specific populations of neurons in the striatum – a brain region also implicated in Parkinson’s disease and other disorders.

The MIT team led by Ann Graybiel, an Institute Professor and member of the McGovern Institute for Brain Research, focused on a gene known as CalDAG-GEFI, which is particularly enriched in the striatal neurons that die in Huntington’s disease. The MIT team showed that CalDAG-GEFI is dramatically down-regulated in the brains of individuals with Huntington’s disease as well as in mouse models of the disease. By following mutant mice for up to 9 months, the researchers showed that this reduction occurs gradually, in parallel with the progression of the disease.

These progressive changes suggest that CalDAG-GEFI is likely to play some role in the disease process. The researchers wanted to determine whether the suppression of this gene is part of the death process, or whether it represents part of the brain’s protective response. They found that the latter explanation appears to be true – when the researchers artificially blocked the expression of CalDAG-GEFI (using a method known as siRNA), the striatal neurons were protected from Htt –induced damage.

“So the enriched expression of CalDAG-GEFI in the striatum may explain, in part, why striatal neurons are particularly vulnerable to the expression of mutant Htt,” explained first author and research scientist, Jill Crittenden of the McGovern Institute for Brain Research. “Switching off of the CalDAG-GEFI gene may represent the neuron’s attempt, ultimately unsuccessful, to save itself.”

Huntington’s disease is currently incurable, and existing treatments address only the symptoms, and have no effect on the course of the disease or its eventual fatal outcome. The researchers hope that by understanding the molecular pathway by which neurons are killed, their findings may suggest new strategies for the development of treatments that could slow or even prevent the progression of the disease.

Source: Crittenden J, Dunn DE, Merali FI, Woodman B, Yim M, Borkowska AE, Frosch MP, Bates GP,Housman DE, Lo DC, Graybiel AM. CalDAG-GEFI Down-regulation in the striatum as a neuroprotective change in Huntington’s Disease. Human Molecular Genetics. 10 February 2010.

Funding: Institute of Child Health and Development, James W. and Patricia T. Poitras Major Mental Illness Research Fund, National Institutes of Mental Health, Wellcome Trust, Cure Huntington’s Disease Initiative, Inc., Hereditary Disease Foundation, Neuropathology Cores of the Massachusetts Alzheimer Disease Research Center, MGH/MIT Morris Udall Center of Excellence in Parkinson Disease Research, and the McGovern Institute for Brain Research at MIT

Jen Hirsch
MIT News Office
email: jfhirsch@mit.edu
call: 617-253-1682

Jen Hirsch | Newswise Science News
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>