Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons grown from skin cells may hold clues to autism

28.11.2011
Rare syndrome's workings could help explain how brain wiring goes awry -- NIH-funded study

Potential clues to how autism miswires the brain are emerging from a study of a rare, purely genetic form of the disorders that affects fewer than 20 people worldwide.


Representative iPSC-derived neurons from Timothy syndrome patient (bottom) shows increased numbers of neurons that produce the chemical messengers norepinephrine and dopamine, compared to those from a control subject (top). Credit: Ricardo Dolmetsch, Ph.D., Stanford University

Using cutting-edge "disease-in a-dish" technology, researchers funded by the National Institutes of Health have grown patients' skin cells into neurons to discover what goes wrong in the brain in Timothy Syndrome. Affected children often show symptoms of autism spectrum disorders along with a constellation of physical problems.

Abnormalities included changes in the composition of cells in the cortex, the largest brain structure in humans, and of neurons that secrete two key chemical messengers. Neurons that make long-distance connections between the brain's hemispheres tended to be in short supply.

Most patients with Timothy Syndrome meet diagnostic criteria for an autism spectrum disorder. Yet, unlike most cases of autism, Timothy syndrome is known to be caused by a single genetic mutation.

"Studying the consequences of a single mutation, compared to multiple genes with small effects, vastly simplifies the task of pinpointing causal mechanisms," explained Ricardo Dolmetsch, Ph.D., of Stanford University, a National Institute of Mental Health (NIMH) grantee who led the study. His work was partially funded by a NIH Director's Pioneer Award.

Dolmetsch, and colleagues, report on their findings Nov. 27, 2011 in the journal Nature Medicine.

"Unlike animal research, the cutting-edge technology employed in this study makes it possible to pinpoint molecular defects in a patient's own brain cells," said NIMH Director Thomas R. Insel, M.D. "It also offers a way to screen more rapidly for medications that act on the disordered process."

Prior to the current study, researchers knew that Timothy syndrome is caused by a tiny glitch in the gene that codes for a calcium channel protein in cell membranes. The mutation results in too much calcium entering cells, causing a tell-tale set of abnormalities throughout the body. Proper functioning of the calcium channel is known to be particularly critical for proper heart rhythm – many patients die in childhood of arrhythmias – but its role in brain cells was less well understood.

To learn more, Dolmetsch and colleagues used a new technology called induced pluripotent stem cells (iPSCs). They first converted skin cells from Timothy Syndrome patients into stem cells and then coaxed these to differentiate into neurons.

"Remarkable reproducibility" observed across multiple iPSC lines and individuals confirmed that the technique can reveal defects in neuronal differentiation – such as whether cells assume the correct identity as the brain gets wired-up in early development, said the researchers. Compared to those from controls, fewer neurons from Timothy Syndrome patients became neurons of the lower layers of the cortex and more became upper layer neurons. The lower layer cells that remained were more likely to be the kind that project to areas below the cortex. In contrast, there were fewer-than-normal neurons equipped to form a structure, called the corpus callosum, which makes possible communications between the left and right hemispheres.

Many of these defects were also seen in parallel studies of mice with the same genetic mutation found in Timothy syndrome patients. This supports the link between the mutation and the developmental abnormalities.

Several genes previously implicated in autism were among hundreds found to be expressed abnormally in Timothy Syndrome neurons. Excess cellular calcium levels also caused an overproduction of neurons that make key chemical messengers. Timothy Syndrome neurons secreted 3.5 times more norepinephrine and 2.3 times more dopamine than control neurons. Addition of a drug that blocks the calcium channel reversed the abnormalities in cultured neurons, reducing the proportion of catecholamine-secreting cells by 68 percent.

The findings in Timothy Syndrome patient iPSCs follow those in Rett Syndrome, another single gene disorder that often includes autism-like symptoms. About a year ago, Alysson Muotri, Ph.D., and colleagues at University of California, San Diego, reported deficits in the protrusions of neurons, called spines, that help form connections, or synapses. The Dolmetsch team's discovery of earlier (neuronal fate) and later (altered connectivity) defects suggest that disorders on the autism spectrum affect multiple stages in early brain development.

"Most of these abnormalities are consistent with other emerging evidence that ASDs arise from defects in connectivity between cortex areas and show decreased size of the corpus callosum," said Dolmetsch. "Our study reveals how these might be traceable to specific mechanisms set in motion by poor regulation of cellular calcium. It also demonstrates that neurons derived from iPSCs can be used to identify the cellular basis of a neurodevelopmental disorder."

The mechanisms identified in this study may become potential targets for developing new therapies for Timothy Syndrome and may also provide insights into the neural basis of deficits in other forms of autism, said Dolmetsch.

Reference
Using iPS cell-derived neurons to uncover cellular phenotypes associated with Timothy Syndrome. Pasca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov O, Pasca AM, Cord B, Palmer TD, Chikahisa S, Seiji N, Bernstein JA, Hallmayer J, Geschwind DH, Dolmetsch RE. November 27, 2011. Nature Medicine.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>