Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When neurons have less to say, they say it with particular emphasis

Neurons strengthen their synapses in order to remain active after loss of input

The brain is an extremely adaptable organ – but it is also very conservative according to scientists from the Max Planck Institute of Neurobiology in Martinsried in collaboration with colleagues from the Friedrich Miescher Institute in Basel and the Ruhr Institute Bochum.

Even when neurons in the visual cortex are cut off from their main source of information, within 48 hours their activity returns to a level similar to that prior to the disruption. Under the microscope the currently active cells light up thanks to the addition of a calcium indicator.

© MPI of Neurobiology/Hübener

The researchers succeeded in demonstrating that neurons in the brain regulate their own excitability so that the activity level in the network remains as constant as possible. Even in the event of major changes, for example the complete absence of information from a sensory organ, the almost silenced neurons re-establish levels of activity similar to their previous ones after only 48 hours. The mean activity level thus achieved is a basic prerequisite for a healthy brain and the formation of new connections between neurons – an essential capacity for regeneration following injury to the brain or a sensory organ, for example.

Neurons communicate using electrical signals. They transmit these signals to neighbouring cells via special contact points known as the synapses. When a new item of information presents for processing, the cells can develop new synaptic contacts with their neighbouring cells or strengthen existing ones. To enable forgetting, these processes are also reversible. The brain is consequently in a constant state of reorganisation, through which individual neurons are prevented from becoming either too active or too inactive. The aim is to keep the level of activity constant, as the long-term overexcitement of neurons can result in damage to the brain.

Too little activity is not good either. “The cells can only re-establish connections with their neighbours when they are ‘awake’, so to speak, that is when they display a minimum level of activity,” explains Mark Hübener, head of the recently published study. The international team of researchers succeeded in demonstrating for the first time that the brain itself compensates for massive changes in neuronal activity within a period of two days, and can return to a similar level of activity to that before the change.

Up to now, the only indication of this astonishing capacity of the brain came from cell cultures. It was also unclear as to how neurons could control their own excitability in relation to the activity of the entire network. Now, the scientists have made significant progress towards finding an answer to this question. In their study, they examined the visual cortex of mice that recently went blind. As expected, but never previously demonstrated, the activity of the neurons in this area of the brain did not fall to zero but to half of the original value. “That alone was an astonishing finding, as it shows the extent to which the visual cortex also processes information from other areas of the brain,” explains Tobias Bonhoeffer, who has been researching processes in the visual cortex at his department in the Max Planck Institute of Neurobiology for many years. “However, things really became exciting when we observed the area further over the following hours and days.”

The scientists were able, under the microscope, to witness “live” how the neurons in the visual cortex became active again. After just a few hours, they could clearly observe how the points of contact between the affected cells and neighbouring cells increased in size. When synapses get bigger, they also become stronger and signals are transmitted faster and more effectively. As a result of this intensification of the contact between the neurons, the activity of the affected network returned to its starting value after a period of between 24 and 48 hours. “To put it simply, due to the absence of visual input, the cells had less to say – but when they did say something, they said it with particular emphasis,” explains Mark Hübener.

Due to the simultaneous strengthening of all of the synapses of the affected neurons, major reductions in the neuronal activity can be normalised again with surprising speed. The relatively stable activity level thereby achieved is an essential prerequisite for maintaining a healthy, adaptable brain.


Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514
Email: merker@­
Prof. Dr. Mark Hübener
Max Planck Institute of Neurobiology, Martinsried
Email: mark@­
Prof. Dr. Ulf Eysel
Chair of Neurophysiology
Ruhr-Universität Bochum
Phone: +49 234 3223849
Fax: +49 234 3214192
Email: eysel@­
Dr. Julia Weiler
Ruhr-Universität Bochum
Phone: +49 234 32-25228
Email: julia.weiler@­
Original publication
Tara Keck, Georg B. Keller, R. Irene Jacobsen, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener
Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
Neuron, 16 October 2013

Dr. Stefanie Merker | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>