Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When neurons have less to say, they say it with particular emphasis

17.10.2013
Neurons strengthen their synapses in order to remain active after loss of input

The brain is an extremely adaptable organ – but it is also very conservative according to scientists from the Max Planck Institute of Neurobiology in Martinsried in collaboration with colleagues from the Friedrich Miescher Institute in Basel and the Ruhr Institute Bochum.


Even when neurons in the visual cortex are cut off from their main source of information, within 48 hours their activity returns to a level similar to that prior to the disruption. Under the microscope the currently active cells light up thanks to the addition of a calcium indicator.

© MPI of Neurobiology/Hübener

The researchers succeeded in demonstrating that neurons in the brain regulate their own excitability so that the activity level in the network remains as constant as possible. Even in the event of major changes, for example the complete absence of information from a sensory organ, the almost silenced neurons re-establish levels of activity similar to their previous ones after only 48 hours. The mean activity level thus achieved is a basic prerequisite for a healthy brain and the formation of new connections between neurons – an essential capacity for regeneration following injury to the brain or a sensory organ, for example.

Neurons communicate using electrical signals. They transmit these signals to neighbouring cells via special contact points known as the synapses. When a new item of information presents for processing, the cells can develop new synaptic contacts with their neighbouring cells or strengthen existing ones. To enable forgetting, these processes are also reversible. The brain is consequently in a constant state of reorganisation, through which individual neurons are prevented from becoming either too active or too inactive. The aim is to keep the level of activity constant, as the long-term overexcitement of neurons can result in damage to the brain.

Too little activity is not good either. “The cells can only re-establish connections with their neighbours when they are ‘awake’, so to speak, that is when they display a minimum level of activity,” explains Mark Hübener, head of the recently published study. The international team of researchers succeeded in demonstrating for the first time that the brain itself compensates for massive changes in neuronal activity within a period of two days, and can return to a similar level of activity to that before the change.

Up to now, the only indication of this astonishing capacity of the brain came from cell cultures. It was also unclear as to how neurons could control their own excitability in relation to the activity of the entire network. Now, the scientists have made significant progress towards finding an answer to this question. In their study, they examined the visual cortex of mice that recently went blind. As expected, but never previously demonstrated, the activity of the neurons in this area of the brain did not fall to zero but to half of the original value. “That alone was an astonishing finding, as it shows the extent to which the visual cortex also processes information from other areas of the brain,” explains Tobias Bonhoeffer, who has been researching processes in the visual cortex at his department in the Max Planck Institute of Neurobiology for many years. “However, things really became exciting when we observed the area further over the following hours and days.”

The scientists were able, under the microscope, to witness “live” how the neurons in the visual cortex became active again. After just a few hours, they could clearly observe how the points of contact between the affected cells and neighbouring cells increased in size. When synapses get bigger, they also become stronger and signals are transmitted faster and more effectively. As a result of this intensification of the contact between the neurons, the activity of the affected network returned to its starting value after a period of between 24 and 48 hours. “To put it simply, due to the absence of visual input, the cells had less to say – but when they did say something, they said it with particular emphasis,” explains Mark Hübener.

Due to the simultaneous strengthening of all of the synapses of the affected neurons, major reductions in the neuronal activity can be normalised again with surprising speed. The relatively stable activity level thereby achieved is an essential prerequisite for maintaining a healthy, adaptable brain.

Contact

Dr. Stefanie Merker
Max Planck Institute of Neurobiology, Martinsried
Phone: +49 89 8578-3514
Email: merker@­neuro.mpg.de
Prof. Dr. Mark Hübener
Max Planck Institute of Neurobiology, Martinsried
Email: mark@­neuro.mpg.de
Prof. Dr. Ulf Eysel
Chair of Neurophysiology
Ruhr-Universität Bochum
Phone: +49 234 3223849
Fax: +49 234 3214192
Email: eysel@­rub.de
Dr. Julia Weiler
Wissenschaftskommunikation
Ruhr-Universität Bochum
Phone: +49 234 32-25228
Email: julia.weiler@­uv.rub.de
Original publication
Tara Keck, Georg B. Keller, R. Irene Jacobsen, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener
Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
Neuron, 16 October 2013

Dr. Stefanie Merker | Max-Planck-Institut
Further information:
http://www.mpg.de/7572370/homeostatic-plasticity?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>