Why do neurons die in Parkinson's disease?

Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired.

A study from Children's Hospital Boston now shows that genetic mutations causing a hereditary form of Parkinson's disease cause mitochondria to run amok inside the cell, leaving the cell without a brake to stop them. Findings appear in the November 11 issue of Cell.

Mitochondrial movement is often a good thing, especially in neurons, which need to get mitochondria to cells' periphery in order to fuel the axons and dendrites that send and receive signals. However, arresting this movement is equally important, says senior investigator Thomas Schwarz, PhD, of Children's F.M. Kirby Neurobiology Center, since it allows mitochondria to be quarantined and destroyed when they go bad.

“Mitochondria, when damaged, produce reactive oxygen species that are highly destructive, and can fuse with healthy mitochondria and contaminate them, too,” Schwarz says. “It's the equivalent of an environmental disaster in the cell.”

Studying neurons from fruit flies, rats and mice, as well as cultured human cells, Schwarz and colleagues provide the most detailed understanding to date of the effects of the gene mutations, which encode the proteins Parkin and PINK1. They demonstrate how these proteins interact with proteins responsible for mitochondrial movement — in particular Miro, which literally hitches a molecular motor onto the organelle.

Normally, when mitochondria go bad, PINK1 tags Miro to be destroyed by Parkin and enzymes in the cell, the researchers showed. When Miro is destroyed, the motor detaches from the mitochondrion. The organelle, unable to move, can then be disposed of: The cell literally digests it.

But when either PINK1 or Parkin is mutated, this containment system fails, leaving the damaged mitochondria free to move about the cell, spewing toxic compounds and fusing to otherwise healthy mitochondria and introducing damaged components.

The study's findings are consistent with observed changes in mitochondrial distribution, transport and dynamics in other neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (Lou Gehrig's disease), and Charcot-Marie-Tooth disease, the researchers note.

Although the team studied a rare hereditary form of Parkinson's, the findings may shed light on what's going on in the more common sporadic form of the disease, Schwarz says.

“Whether it's clearing out damaged mitochondria, or preventing mitochondrial damage, the common thread is that there's too much damage in mitochondria in a particular brain region,” he says.

While Schwarz sees potential in gene therapy to restore normal PINK1 or Parkin to neurons, he is more interested in the possibility of helping neurons flush out bad mitochondria or make enough new, healthy mitochondria to keep them viable. “We may need to do both,” he says.

The study was funded by the Ellison Medical Foundation, the Hartman Foundation for Parkinson's Research, the National Institutes of Health and a LSRF Novartis Fellowship. Xinnan Wang, PhD, of the F.M. Kirby Neurobiology Center at Children's, was first author.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's, visit: http://vectorblog.org

Media Contact

Erin Tornatore EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors