Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why do neurons die in Parkinson's disease?

Study of hereditary Parkinson's finds that mitochondria can't be cleared out when damaged

Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired.

A study from Children's Hospital Boston now shows that genetic mutations causing a hereditary form of Parkinson's disease cause mitochondria to run amok inside the cell, leaving the cell without a brake to stop them. Findings appear in the November 11 issue of Cell.

Mitochondrial movement is often a good thing, especially in neurons, which need to get mitochondria to cells' periphery in order to fuel the axons and dendrites that send and receive signals. However, arresting this movement is equally important, says senior investigator Thomas Schwarz, PhD, of Children's F.M. Kirby Neurobiology Center, since it allows mitochondria to be quarantined and destroyed when they go bad.

"Mitochondria, when damaged, produce reactive oxygen species that are highly destructive, and can fuse with healthy mitochondria and contaminate them, too," Schwarz says. "It's the equivalent of an environmental disaster in the cell."

Studying neurons from fruit flies, rats and mice, as well as cultured human cells, Schwarz and colleagues provide the most detailed understanding to date of the effects of the gene mutations, which encode the proteins Parkin and PINK1. They demonstrate how these proteins interact with proteins responsible for mitochondrial movement -- in particular Miro, which literally hitches a molecular motor onto the organelle.

Normally, when mitochondria go bad, PINK1 tags Miro to be destroyed by Parkin and enzymes in the cell, the researchers showed. When Miro is destroyed, the motor detaches from the mitochondrion. The organelle, unable to move, can then be disposed of: The cell literally digests it.

But when either PINK1 or Parkin is mutated, this containment system fails, leaving the damaged mitochondria free to move about the cell, spewing toxic compounds and fusing to otherwise healthy mitochondria and introducing damaged components.

The study's findings are consistent with observed changes in mitochondrial distribution, transport and dynamics in other neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (Lou Gehrig's disease), and Charcot-Marie-Tooth disease, the researchers note.

Although the team studied a rare hereditary form of Parkinson's, the findings may shed light on what's going on in the more common sporadic form of the disease, Schwarz says.

"Whether it's clearing out damaged mitochondria, or preventing mitochondrial damage, the common thread is that there's too much damage in mitochondria in a particular brain region," he says.

While Schwarz sees potential in gene therapy to restore normal PINK1 or Parkin to neurons, he is more interested in the possibility of helping neurons flush out bad mitochondria or make enough new, healthy mitochondria to keep them viable. "We may need to do both," he says.

The study was funded by the Ellison Medical Foundation, the Hartman Foundation for Parkinson's Research, the National Institutes of Health and a LSRF Novartis Fellowship. Xinnan Wang, PhD, of the F.M. Kirby Neurobiology Center at Children's, was first author.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's, visit:

Erin Tornatore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>