Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New neurons take 6 months or more to mature in non-human primate brain

07.06.2011
New neurons take more than six months to mature in adult monkeys and that time is likely even longer in humans, according to researchers at the University of Pittsburgh School of Medicine, the University of Illinois, and Pennsylvania State University.

Their findings, reported this week in the online version of the Proceedings of the National Academy of Sciences, challenge the notion that the time it takes for neurogenesis is the reason anti-depressant medications are not fully effective until three to five weeks after treatment begins.

The dentate gyrus of the brain's hippocampus is known to be where new neurons still form in adult mammals, and this region is thought to play a significant role in learning and memory, cognitive change with aging, depression and schizophrenia, and other brain processes, said Judy Cameron, Ph.D., professor, Department of Psychiatry, University of Pittsburgh School of Medicine, and senior scientist, Oregon National Primate Research Center, Oregon Health and Science University.

"Expanding our knowledge beyond rodent models to understand how neurons mature in non-human primates will give us more insight into what happens in the human brain," she said. "In rodents, neuronal maturation happens in four weeks, which is considerably different than what we have found in our monkey studies."

Dr. Cameron, co-senior scientist William T. Greenough, Ph.D., of the University of Illinois, and the team gave adult monkeys injections of an agent called BrdU, which gets incorporated into replicating DNA and thus serves as an indicator of new neuron formation. At different time points after the injections, they examined the brain tissue to look for markers of stages of maturation in tiny neurons called granule cells.

Six weeks after an injection, 84 percent of the new cells still bore markers of immaturity and were immature in shape; in a rodent, all of the cells would have matured by this time. Only a third of the monkey granule cells had markers of maturity up to 28 weeks after BrdU injections.

That means the majority of new granule cells will not reach maturity until more than six months have passed, Dr. Greenough and colleagues said. Also, because the human brain is larger than the monkey brain and takes longer to develop, maturation of adult human neurons would likely be further lengthened.

The longer period of new granule cell maturation in primates argues against the hypothesis, based on rodent models, that the onset of effectiveness of antidepressant medications at three to five weeks is related to neurogenesis and maturation of these cells.

The research team included Shawn J. Kohler and Gregory B. Stanton, Ph.D., of the University of Illinois; and Nancy I. Williams, Sc.D., of Pennsylvania State University. The study was funded by the National Institutes of Health, the Spastic Paralysis and Allied Diseases of the Central Nervous System Foundation, and the Retirement Research Foundation.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu
http://www.medschool.pitt.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>