Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal microchip helps identify neurotoxins

29.01.2010
Scientists from Dortmund/Germany have invented an analytical method for the rapid neurotoxicity screening.

They grow neurons on a microchip and check for substances that inhibit the formation of a network between the cells.

Scientists from the "Leibniz-Institut für Analytische Wissenschaften" (ISAS) in Dortmund have invented a rapid method for screening neurotoxins: The "Miniaturisation for the Life Sciences" group used a microchip to pattern human neurons as a hexagonal array of nodes and let the neurons grow connections to build a network. When the cells were exposed to a neurotoxin, however, the growth of this network was disturbed, and could be used to quantify neurotoxicity. Jonathan West, who led the project, has called the method the "network formation assay" (NFA).

"The formation of connections between neurons is one of the basic principles of memory and learning, and its disturbance is frequently a clinical sign of neurotoxicity", says Christoph van Thriel from the "Leibniz-Institut für Arbeitsforschung" (IfADo) in Dortmund, a collaborator on the project. "The NFA therefore represents an in vitro model that is comparable to the in vivo state." Thus, the NFA can improve the ability to predict the neurotoxic effects of a chemical and ultimately reduce animal testing.

In addition, a typical NFA screen takes only a few hours, enabling scientists to test a great number of substances in a very short time. The need for rapid screening methods has grown since the EU has implemented the REACH legislation.

Jonathan West and his colleagues have recently published their NFA method in the "Lab on a Chip" journal. This month it was highlighted in the RSC "Chemical Technology" magazine.

Tinka Wolf | idw
Further information:
http://www.isas.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>