Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New neuronal circuits which control fear have been identified

11.11.2010
Fear is an adaptive response, essential to the survival of many species. This behavioural adaptation may be innate but can also be a consequence of conditioning, during the course of which an animal learns that a particular stimulus precedes an unpleasant event.

There is a large amount of data indicating that the amygdala, a particular structure in the brain, is strongly involved during the learning of "conditioned" fear.

However, until now, the underlying neuronal circuits have remained largely unknown. Now, research involving several Swiss and German teams and a researcher from Inserm Unit 862, "Neurocentre Magendie", in Bordeaux, has been able to identify, for the first time, distinct neuronal circuits within the central nucleus of the amygdala which are specifically involved in acquisition and control of behavioural fear responses. Details of these results are published in this week's edition of the journal Nature.

In this study, laboratory mice were first subjected to a simple behavioural task which consisted of learning that an audible stimulus presaged the arrival of an unpleasant event. Following this conditioning, presentation of the audible stimulus induced a set of behavioural manifestations of fear such as freezing of the animals. Using highly innovative pharmacological and optogenetic techniques, the researchers have shown that the medial and central nuclei of the central amygdala were differentially involved in either learning or behavioural manifestation of fear responses (see the diagram on the next page). Indeed, the researchers were able to show that after inactivating the lateral subdivision of the central nucleus of the amygdala, the animals no longer learnt the association between the sound and the unpleasant event. By contrast, inactivation of the medial subdivision of this nucleus did not disrupt the learning of fear; however, the animals were now no longer able to give a behavioural manifestation to their fear, i.e. freezing.

In that second step, real-time recording of the activity of the neurons in the lateral and medial subdivisions of the central amygdala, using unique electrophysiological techniques, made it possible for the researchers to identify the specific neurons, within the structures, which were involved in conditioning and behavioural manifestation of fear responses.

These neurons are inhibitor cells belonging to very organized and strongly interconnected neuronal circuits. Modification of the activity of these circuits enables the relevant behavioural fear response to be selected as a function of the environmental situation.

Hence, our work defines the functional architecture of the neuronal circuits of the central amygdala and their role in acquisition and regulation of fear behaviours. Precise identification of the neuronal circuits which control fear is a major clinical challenge. Patients suffering from disorders, such as post-traumatic stress disorder or anxiety problems, exhibit disruption of certain neuronal circuits which leads to unsuitable anxiety behaviour responses. The selective manipulation of neuronal circuits that we have identified, using new therapeutic approaches which need to be developed further, could make it possible to regulate the pathological manifestations of fear in these patients.

Source
"Encoding of conditioned fear in central amygdala inhibitory circuits"
Stephane Ciocchi1*, Cyril Herry1*{, François Grenier1, Steffen B. E.Wolff1, Johannes J. Letzkus1, Ioannis Vlachos2, Ingrid Ehrlich1{,Rolf Sprengel3, Karl Deisseroth4, Michael B. Stadler1, Christian Müller1 & Andreas Lüthi1
1 Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
2 Bernstein Center for Computational Neuroscience, 79104 Freiburg, Germany.
3 Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
4 Department of Bioengineering, Stanford University, Stanford, California 94305, USA.

Nature, 11 November 2010, DOI 10.1038/nature09559

Contact chercheur
Cyril Herry
Chargé de recherche Inserm
Unité Inserm 862,
Neurocentre Magendie
Bordeaux
Tel: +33 5 57 57 37 26
E-mail: cyril.herry@inserm.fr

Séverine Ciancia | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>