Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How neuronal activity leads to Alzheimer's protein cleavage

Amyloid precursor protein (APP), whose cleavage product, amyloid-b (Ab), builds up into fibrous plaques in the brains of Alzheimer's disease patients, jumps from one specialized membrane microdomain to another to be cleaved, report Sakurai et al.

Although there is no definitive evidence that Ab plaques are the direct cause of Alzheimer's disease, there is much circumstantial evidence to support this. And working on this hypothesis, scientists are investigating just how the plaques form and what might be done to stop or reverse their formation.

APP, a protein of unknown function, is membrane associated and concentrates at the neuronal synapse. Certain factors such as high cellular cholesterol and increased neuronal or synaptic activity are known to drive APP cleavage, and Sakurai and colleagues' paper pulls these two modes of Ab regulation together.

APP associates with membrane microdomains high in cholesterols (lipid rafts). These lipid rafts can also contain the enzyme necessary for APP cleavage, BACE. Synaptic activity is known to involve a very different type of membrane microdomain high in an excytosis-promoting factor called syntaxin. Sakurai et al. now show that although APP preferentially associates with syntaxin microdomains, upon neuronal stimulation APP instead associates with microdomains that contain BACE.

It's unclear why APP should be associated with syntaxin, though it might suggest a role for APP in vesicle trafficking and exocytosis. Also unclear is why neuronal activity should cause APP to jump from syntaxin domains to BACE domains. What is clear, however, is that the process is an active one, requiring a kinase called cdk5. Furthermore, treating neurons with a cdk5 inhibitor called roscovitine, which is currently in trials for cancer treatment, reduced APP's association with BACE microdomains and reduced APP cleavage.

Sakurai, T., et al. 2008. J. Cell Biol. doi:10.1083/jcb.200804075

Sati Motieram | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>