Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuron tells stem cells to grow new neurons

03.06.2014

Researchers identify first piece of new brain-repair circuit

Duke researchers have found a new type of neuron in the adult brain that is capable of telling stem cells to make more new neurons. Though the experiments are in their early stages, the finding opens the tantalizing possibility that the brain may be able to repair itself from within.


In this artist's representation of the adult subependymal neurogenic niche (viewed from underneath the ependyma), electrical signals generated by the ChAT+ neuron give rise to newborn migrating neuroblasts, seen moving over the underside of ependymal cells.

Credit: Illustration by O'Reilly Science Art

Neuroscientists have suspected for some time that the brain has some capacity to direct the manufacturing of new neurons, but it was difficult to determine where these instructions are coming from, explains Chay Kuo, M.D. Ph.D., an assistant professor of cell biology, neurobiology and pediatrics.

In a study with mice, his team found a previously unknown population of neurons within the subventricular zone (SVZ) neurogenic niche of the adult brain, adjacent to the striatum. These neurons expressed the choline acetyltransferase (ChAT) enzyme, which is required to make the neurotransmitter acetylcholine. With optogenetic tools that allowed the team to tune the firing frequency of these ChAT+ neurons up and down with laser light, they were able to see clear changes in neural stem cell proliferation in the brain.

The findings appeared as an advance online publication June 1 in the journal Nature Neuroscience.

The mature ChAT+ neuron population is just one part of an undescribed neural circuit that apparently talks to stem cells and tells them to increase new neuron production, Kuo said. Researchers don't know all the parts of the circuit yet, nor the code it's using, but by controlling ChAT+ neurons' signals Kuo and his Duke colleagues have established that these neurons are necessary and sufficient to control the production of new neurons from the SVZ niche.

"We have been working to determine how neurogenesis is sustained in the adult brain. It is very unexpected and exciting to uncover this hidden gateway, a neural circuit that can directly instruct the stem cells to make more immature neurons," said Kuo, who is also the George W. Brumley, Jr. M.D. assistant professor of developmental biology and a member of the Duke Institute for Brain Sciences. "It has been this fascinating treasure hunt that appeared to dead-end on multiple occasions!"

Kuo said this project was initiated more than five years ago when lead author Patricia Paez-Gonzalez, a postdoctoral fellow, came across neuronal processes contacting neural stem cells while studying how the SVZ niche was assembled.

The young neurons produced by these signals were destined for the olfactory bulb in rodents, as the mouse has a large amount of its brain devoted to process the sense of smell and needs these new neurons to support learning. But in humans, with a much less impressive olfactory bulb, Kuo said it's possible new neurons are produced for other brain regions. One such region may be the striatum, which mediates motor and cognitive controls between the cortex and the complex basal ganglia.

"The brain gives up prime real estate around the lateral ventricles for the SVZ niche housing these stem cells," Kuo said. "Is it some kind of factory taking orders?" Postdoctoral fellow Brent Asrican made a key observation that orders from the novel ChAT+ neurons were heard clearly by SVZ stem cells.

Studies of stroke injury in rodents have noted SVZ cells apparently migrating into the neighboring striatum. And just last month in the journal Cell, a Swedish team observed newly made control neurons called interneurons in the human striatum for the first time. They reported that interestingly in Huntington's disease patients, this area seems to lack the newborn interneurons.

"This is a very important and relevant cell population that is controlling those stem cells," said Sally Temple, director of the Neural Stem Cell Institute of Rensselaer, NY, who was not involved in this research. "It's really interesting to see how innervations are coming into play now in the subventricular zone."

Kuo's team found this system by following cholinergic signaling, but other groups are arriving in the same niche by following dopaminergic and serotonergic signals, Temple said. "It's a really hot area because it's a beautiful stem cell niche to study. It's this gorgeous niche where you can observe cell-to-cell interactions."

These emerging threads have Kuo hopeful researchers will eventually be able to find the way to "engage certain circuits of the brain to lead to a hardware upgrade. Wouldn't it be nice if you could upgrade the brain hardware to keep up with the new software?" He said perhaps there will be a way to combine behavioral therapy and stem cell treatments after a brain injury to rebuild some of the damage.

The questions ahead are both upstream from the new ChAT+ neurons and downstream, Kuo says. Upstream, what brain signals tell ChAT+ neurons to start asking the stem cells for more young neurons? Downstream, what's the logic governing the response of the stem cells to different frequencies of ChAT+ electrical activity?

There's also the big issue of somehow being able to introduce new components into an existing neuronal circuit, a practice that parts of the brain might normally resist. "I think that some neural circuits welcome new members, and some don't," Kuo said.

###

In addition to Paez-Gonzalez, Asrican, and Kuo, Erica Rodriguez, a graduate student in the neurobiology training program, is also an author. This research was supported by the National Institutes of Health, David & Lucile Packard Foundation, and George Brumley Jr. Endowment.

CITATION: "Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis," Patricia Paez-Gonzales, Brent Asrican, Erica Rodriguez, Chay T. Kuo. Nature Neuroscience Advance Online, June 1, 2014. DOI: 10.1038/nn.3734

Karl Leif Bates | Eurek Alert!

Further reports about: Nature Neuron Neuroscience SVZ circuit grow injury neurogenesis neurons niche signals

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>