Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurobiologists find that weak electrical fields in the brain help neurons fire together

03.02.2011
Coordinated behavior occurs whether or not neurons are actually connected via synapses

The brain—awake and sleeping—is awash in electrical activity, and not just from the individual pings of single neurons communicating with each other. In fact, the brain is enveloped in countless overlapping electric fields, generated by the neural circuits of scores of communicating neurons.

The fields were once thought to be an "epiphenomenon, a 'bug' of sorts, occurring during neural communication," says neuroscientist Costas Anastassiou, a postdoctoral scholar in biology at the California Institute of Technology (Caltech).

New work by Anastassiou and his colleagues, however, suggests that the fields do much more—and that they may, in fact, represent an additional form of neural communication.

"In other words," says Anastassiou, the lead author of a paper about the work appearing in the journal Nature Neuroscience, "while active neurons give rise to extracellular fields, the same fields feed back to the neurons and alter their behavior," even though the neurons are not physically connected—a phenomenon known as ephaptic coupling. "So far, neural communication has been thought to occur at localized machines, termed synapses. Our work suggests an additional means of neural communication through the extracellular space independent of synapses."

Extracellular electric fields exist throughout the living brain, though they are particularly strong and robustly repetitive in specific brain regions such as the hippocampus, which is involved in memory formation, and the neocortex, the area where long-term memories are held. "The perpetual fluctuations of these extracellular fields are the hallmark of the living and behaving brain in all organisms, and their absence is a strong indicator of a deeply comatose, or even dead, brain," Anastassiou explains.

Previously, neurobiologists assumed that the fields were capable of affecting—and even controlling—neural activity only during severe pathological conditions such as epileptic seizures, which induce very strong fields. Few studies, however, had actually assessed the impact of far weaker—but very common—non-epileptic fields. "The reason is simple," Anastassiou says. "It is very hard to conduct an in vivo experiment in the absence of extracellular fields," to observe what changes when the fields are not around.

To tease out those effects, Anastassiou and his colleagues, including Caltech neuroscientist Christof Koch, the Lois and Victor Troendle Professor of Cognitive and Behavioral Biology and professor of computation and neural systems, focused on strong but slowly oscillating fields, called local field potentials (LFP), that arise from neural circuits composed of just a few rat brain cells. Measuring those fields and their effects required positioning a cluster of tiny electrodes within a volume equivalent to that of a single cell body—and at distances of less than 50 millionths of a meter from one another.

"Because it had been so hard to position that many electrodes within such a small volume of brain tissue, the findings of our research are truly novel," Anastassiou says. Previously, he explains, "nobody had been able to attain this level of spatial and temporal resolution."

An "unexpected and surprising finding was how already very weak extracellular fields can alter neural activity," he says. "For example, we observed that fields as weak as one millivolt per millimeter robustly alter the firing of individual neurons, and increase the so-called "spike-field coherence"—the synchronicity with which neurons fire with relationship to the field."In the mammalian brain, we know that extracellular fields may easily exceed two to three millivolts per millimeter. Our findings suggest that under such conditions, this effect becomes significant."

What does that mean for brain computation? "Neuroscientists have long speculated about this," Anastassiou says. "Increased spike-field coherency may substantially enhance the amount of information transmitted between neurons as well as increase its reliability. Moreover, it has been long known that brain activity patterns related to memory and navigation give rise to a robust LFP and enhanced spike-field coherency. We believe ephaptic coupling does not have one major effect, but instead contributes on many levels during intense brain processing."

Can external electric fields have similar effects on the brain? "This is an interesting question," Anastassiou says. "Indeed, physics dictates that any external field will impact the neural membrane. Importantly, though, the effect of externally imposed fields will also depend on the brain state. One could think of the brain as a distributed computer—not all brain areas show the same level of activation at all times.

"Whether an externally imposed field will impact the brain also depends on which brain area is targeted. During epileptic seizures, pathological fields can be as strong as 100 millivolts per millimeter¬—such fields strongly entrain neural firing and give rise to super-synchronized states." And that, he adds, suggests that electric field activity—even from external fields—in certain brain areas, during specific brain states, may have strong cognitive and behavioral effects.

Ultimately, Anastassiou, Koch, and their colleagues would like to test whether ephaptic coupling affects human cognitive processing, and under which circumstances. "I firmly believe that understanding the origin and functionality of endogenous brain fields will lead to several revelations regarding information processing at the circuit level, which, in my opinion, is the level at which percepts and concepts arise," Anastassiou says. "This, in turn, will lead us to address how biophysics gives rise to cognition in a mechanistic manner—and that, I think, is the holy grail of neuroscience."

The work in the paper, "Ephaptic coupling of cortical neurons," published January 16 in the advance online edition of the journal, was supported by the Engineering Physical Sciences Research Council, the Sloan-Swartz Foundation, the Swiss National Science Foundation, EU Synapse, the National Science Foundation, the Mathers Foundation, and the National Research Foundation of Korea.

Written by Kathy Svitil

Contact: Deborah Williams-Hedges
debwms@caltech.edu
(626) 395-3227
Visit the Caltech Media Relations website at http://media.caltech.edu.

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>